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ABSTRACT
The mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in

allele sizes, features that may introduce bias when using classical measures of population differentiation
based on allele identity (e.g., FST, Nei’s Ds genetic distance). Allele size-based measures of differentiation,
assuming a stepwise mutation process [e.g., Slatkin’s RST, Goldstein et al.’s (��)2], may better reflect
differentiation at microsatellite loci, but they suffer high sampling variance. The relative efficiency of
allele size- vs. allele identity-based statistics depends on the relative contributions of mutations vs. drift to
population differentiation. We present a simple test based on a randomization procedure of allele sizes
to determine whether stepwise-like mutations contributed to genetic differentiation. This test can be
applied to any microsatellite data set designed to assess population differentiation and can be interpreted
as testing whether FST � RST. Computer simulations show that the test efficiently identifies which of FST or
RST estimates has the lowest mean square error. A significant test, implying that RST performs better than
FST, is obtained when the mutation rate, �, for a stepwise mutation process is (a) � m in an island model
(m being the migration rate among populations) or (b) � 1/t in the case of isolated populations (t being
the number of generations since population divergence). The test also informs on the efficiency of other
statistics used in phylogenetical reconstruction [e.g., Ds and (��)2], a nonsignificant test meaning that
allele identity-based statistics perform better than allele size-based ones. This test can also provide insights
into the evolutionary history of populations, revealing, for example, phylogeographic patterns, as illustrated
by applying it on three published data sets.

MICROSATELLITE genetic markers—also called compared. On the contrary, if mutations result in one
short tandem repeats (STRs) or simple sequence of K possible alleles at random [K-allele model (KAM),

repeats (SSRs) because their polymorphism is based on infinite-allele model (IAM); Table 1], comparison be-
the variation in the number of repeats of a simple DNA tween any two different alleles (alleles not identical in
sequence (2–6 bases long)—are nowadays a tool of state) bears the same information: At least one mutation
choice to address population genetics and demographic has occurred since common ancestry; the mutation pro-
questions (e.g., Estoup and Angers 1998). cess is memoryless. Comparison of microsatellite alleles

Microsatellite loci are typically characterized by high can thus provide two kinds of information: allele iden-
mutation rates and hence a high level of polymorphism tity/nonidentity and allele size differences (throughout
as well as by a mutation process that causes preferentially this article, allele identity refers to identity in state and
stepwise changes of the number of repeats [stepwise not identity by descent).
mutation model (SMM), Table 1] and thus allele size Most statistics that describe genetic differentiation
(e.g., Zhu et al. 2000). Hence, the difference in size from genetic markers (e.g., F-statistics) rely solely on
between two different alleles might be informative: The allele identity information. This information is often
larger the difference, the higher the number of muta- used to infer phylogenetic relationships or to obtain
tion events (thus time lapse) is expected to have oc- indirect estimates of gene flow. In the first case, studied
curred since common ancestry. There is thus a “mem- populations are assumed to have diverged by drift and
ory” of past mutation events. Slatkin (1995) showed mutation without gene flow, so that genetic differentia-
that if the mutational process follows a SMM, the ex- tion informs on the time since the beginning of diver-
pected squared difference between allele sizes is a linear gence (e.g., Nei 1972). In the second case, studied popu-
function of the expected coalescence time of the alleles lations are assumed to have diverged by drift up to a

migration-drift equilibrium, so that genetic differentia-
tion informs on the balance between drift and gene
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TABLE 1

Mutation models

Models Effect of a mutation event

IAM: infinite-allele model New allele (never observed previously) created
KAM: K-allele model Mutation toward one of K possible allelic states (excluding the original

state)
SMM: stepwise mutation model Allele size increased or decreased by just 1 unit
GSM: generalized stepwise model Allele size modified by x units, x being a random variable following any

distribution of finite variance

IAM is a particular case of KAM for K � infinity. SMM is a particular case of GSM with x � �1 or 1. For
SMM and GSM, the range of potential allele sizes is unbounded and the mutation rate is independent of prior
allele size (Kimmel and Chakraborty 1996; Feldman et al. 1999).

of populations of effective size N receiving each genera- ent from Slatkin 1995). The analogy between the math-
ematical definitions of FST and RST is more obvious whention a proportion m of genes taken randomly from the

other populations) at migration-drift equilibrium, a noting that (1 � Q) and S both express a degree of
genetic variability, FST and RST expressing the proportioncommonly used relationship is FST � 1/(1 � 4Nm)

(Wright 1965). FST is a parameter describing the degree of variability that can be attributed to differentiation
among populations. RST is related to gene flow in a wayof genetic differentiation among populations and is de-

fined as the correlation of allelic states between genes equivalent to FST [e.g., RST � 1/(1 � 4Nm) in an island
model] but without assumption on the mutation ratesampled within populations or, equivalently, FST � (Qw �

Qb)/(1 � Qb), where Qw (Qb) is the probability that two so that, contrary to FST, the relationship remains valid
for � � m in an island model (Rousset 1996). Here,genes from the same population (different populations)

are identical in state (Excoffier 2001). The product however, the mutation process is assumed to follow a
pure SMM or a generalized stepwise model (GSM; TableNm, a demographic parameter describing the effective

number of migrants per population and generation 1). Allele size information is also exploited by several
measures of genetic distances developed for phylo-(gene flow), can thus be inferred from FST. Among other

assumptions (e.g., Whitlock and McCauley 1999), this genetic reconstruction (e.g., Goldstein et al. 1995b;
Shriver et al. 1995; Kimmel et al. 1996), assuming alsorelationship assumes a low mutation rate � (notably

� � m); otherwise FST � 1/(1 � 4N(m � �)) (Crow a SMM or a GSM. There are, however, two important
drawbacks when using allele size-based statistics. First,and Aoki 1984), and gene flow cannot be inferred from

an estimate of FST unless � is accurately known. As micro- microsatellite mutations are known to deviate more or
less strongly from an ideal SMM or GSM (reviewed insatellites typically have high � (of the order of 10�5 to

10�2; Jarne and Lagoda 1996), their use might lead to Estoup and Angers 1998; Ellegren 2000; Xu et al.
2000). These deviations can result in strongly biasedsignificantly biased gene dispersal estimates. Therefore,

it has been argued that microsatellites are not adequate estimates of divergence time or RST-based estimates of
gene flow. Second, statistics based on allele size typicallyfor large-scale studies of population genetic structure

(i.e., when m is likely to be very low and divergence time suffer high sampling variances when compared to their
counterparts based on allele identity informationlong) or that only loci with an intermediate level of

polymorphism (suggesting moderate mutation rates) (Goldstein et al. 1995b; Takezaki and Nei 1996), as
was shown for RST and FST estimators (Slatkin 1995;should be considered (Jarne and Lagoda 1996; Estoup

and Angers 1998). Gaggiotti et al. 1999; Balloux and Goudet 2002). (As
we are not dealing with the problematics of parameterAlternative solutions to this problem have been pro-

posed using statistics accounting for allele size informa- estimation, we do not use different notations to distin-
guish FST and RST parameters from their respective esti-tion, such as R-statistics (Slatkin 1995; Rousset 1996;

see also Balloux and Lugon-Moulin 2002 for a gen- mators. In the following, FST and RST refer to estimators
that are specified more accurately later on.)eral discussion on F- and R-statistics when assessing pop-

ulation differentiation with microsatellites). Indeed, RST On the basis of simulation results, Gaggiotti et al.
(1999) suggested that for most typical sample sizes andis an analog of FST based on allele size differences: It is

a parameter defined as the correlation of allele sizes genetic parameters encountered in experimental stud-
ies, FST should be preferred over RST to estimate gene(rather than allelic states) between genes sampled

within populations or, equivalently, RST � (Sb � Sw)/Sb, flow parameters with microsatellites because it generally
gave a lower mean square error (a measure of errorwhere Sw (Sb) is the mean square difference in allele

size for two genes from the same population (different accounting for both the bias and the standard error
of the estimates) of Nm estimates. A similar study bypopulations; Excoffier 2001, a definition slightly differ-
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Balloux and Goudet (2002) showed that FST is more tion. Contribution of stepwise-like mutations to genetic
differentiation requires (1) that the mutation processefficient in the case of high levels of gene flow whereas

RST better reflects population differentiation under low is at least partially SMM-like and (2) that the mutation
rate, �, is large enough relative to the effect of driftgene flow. From simple theoretical considerations, one

can predict that there is no gain in using RST over FST and migration (e.g., � � m; otherwise new mutations
are quickly spread beyond their native population bywhen � � m, as both would share identical expectations

(Slatkin 1995; Rousset 1996), but FST should be pre- migration). Table 2 outlines the null hypotheses that
can be tested, presenting a general null hypothesis asferred because of its lower standard error. However, it

is difficult to know a priori which conditions apply for well as specific null hypotheses holding under particular
prior assumptions.a given data set and thus to determine which statistic is

the most appropriate. The principle of the test is based on obtaining a distri-
bution of a statistic under the null hypothesis (H0) thatComparing FST and RST values computed on the same

data can provide valuable insights into the main causes differences in allele sizes do not contribute to popula-
tion differentiation. Therefore, we use a randomizationof population differentiation, i.e., drift vs. mutation, be-

cause these statistics share equal expectations when dif- procedure whereby the different allele sizes observed
at a locus for a given data set are randomly permutedferentiation is caused solely by drift, whereas RST is ex-

pected to be larger than FST under a contribution of among allelic states. To better figure out the procedure,
one may dissociate allelic state, identified, for example,stepwise-like mutations (e.g., Michalakis and Veuille

1996; Ross et al. 1997; Estoup et al. 1998; Lugon-Mou- by a letter (e.g., a, b, c, d, and e if there are five different
alleles), and allele size, identified by a number (e.g., 4, 5,lin et al. 1999). Their comparison can reveal phylo-

geographic patterns, that is, when genetic divergence 7, 8, and 11, each representing the number of sequence
repeats), given that there is a one-to-one correspon-between distinct alleles is related to geographical separa-

tion. However, no procedure has been developed to dence between allelic state and allele size. Before ran-
domization, the allele size attributed to each allelic statedate for testing whether single-locus RST and FST esti-

mates are significantly different. is the actual allele size (e.g., a, 4; b, 5; c, 7; d, 8; and e,
11). Throughout the randomization procedure, geno-This article proposes a simple testing procedure based

on allele size randomizations to determine if mutations types are defined in terms of allelic states and are not
modified, but allele sizes are randomly reassignedfollowing a SMM-like process contribute to genetic dif-

ferentiation. The test can reveal whether allele identity- among allelic states (e.g., a, 7; b, 4; c, 11; d, 5; and e, 8).
After such a randomization, any two genes originallybased or allele size-based statistics should be most

adequate to analyze microsatellite data sets. A nonsig- having the same allele size remain identical, although
it can be for another allele size, whereas any two genesnificant test suggests then that FST should be preferred

over RST or, more generally, that statistics based on allele originally bearing different alleles of small size differ-
ence may bear alleles of large size difference, or recipro-identity are likely to perform better than counterparts

based on allele size information. When mutations are cally. Hence, the allele identity information is kept intact
but not the allele size information. Under the null hy-known to follow a SMM-like process, the test can also

assess the relative importance of the mutation rates vs. pothesis (Table 2, case 1), the randomization procedure
should not affect the expectation of a measure of differ-the migration rate or vs. the reciprocal of the divergence

time in the case of isolated populations. This procedure entiation such as RST. On the contrary, if allele sizes
contribute to genetic differentiation, the RST computedcan be interpreted as testing whether RST � FST and could

therefore be used to reveal phylogeographic patterns. after allele size permutation (hereafter called pRST)
would depend solely on allele identity/nonidentity andIn the following, we present the test, validate it by

simulations, explore its power in different contexts by hence have a smaller expectation than the value com-
puted before randomization. The test can thus be de-simulations again, and apply it on three data sets from

published experimental studies. Emphasis is given to signed by comparing the observed RST value (before
randomization) to the distribution of pRST values ob-the usefulness of the test to determine the efficiency of

FST vs. RST for inferential purposes. Its usefulness to assess tained for all possible configurations of allele size per-
mutations (or a representative subset of them, as thethe efficiency of other statistics based on allele identity

vs. allele size is addressed in the discussion, together total number of different configurations quickly be-
comes enormous when the number of alleles exceedswith other potential applications.
7 or 8). From this comparison, a probability that the
null hypothesis holds can be estimated as the proportion

A SIMPLE TEST ON ALLELE SIZE of pRST values larger than the observed RST (one-tailed
INFORMATION CONTENT

test). Note that the mean pRST should equal in expecta-
tion the FST computed on the same data (not accountingThe test indicates whether allele sizes provide infor-

mation on population differentiation given a data set, for potential statistical bias), as is confirmed later.
On a single locus, such a test can be applied only ifthat is, whether shifts in allele sizes resulting from step-

wise-like mutations contribute to population differentia- a sufficient number of different alleles (n) are in the
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TABLE 2

Hypotheses tested by allele size permutations applied on RST

Null hypothesis H0 Alternative hypothesis Ha

1. General hypotheses
No contribution of stepwise mutations to genetic Contribution of stepwise mutations to genetic

differentiation differentiation
RST � FST RST � FST

2. Specific hypotheses when stepwise mutations occurred
Mutations negligible relative to drift Mutations not negligible relative to drift

a. Island model:
� � m � � m

b. Isolated population model:
� � 1/t � � 1/t

3. Specific hypotheses when mutations contributed to genetic differentiation (e.g., � � m, � � 1/t)
No stepwise-like mutations Stepwise-like mutations

KAM, IAM e.g., SMM, GSM

� is the mutation rate, m is the migration rate per generation, t is the divergence time in number of
generations since populations’ isolation. The sign “�” should be understood as “larger than or in the same
order of magnitude as.” The neutrality of the markers is assumed throughout. The general hypotheses always
hold whereas the specific hypotheses are context dependent.

data set, as the number of different permutation con- mutation test and assess its power. But it is first necessary
to insist on what can be tested (Table 2).figurations is equal to n!. Hence, five alleles (120 differ-

ent configurations) appear to be a minimum to carry Randomizing allele sizes creates replicates of a data
set for a mutation process following a KAM (or IAM)out such test at a type I error rate criterion of 5 or 1%.

On a multilocus RST estimate, the test can be carried because, under this model, allele size is irrelevant and
interchanging them is like replicating the past mutationout by permuting allele sizes within each locus. It is

noteworthy that the test makes no assumptions on the processes leading to the present data set but with other
randomly chosen alleles after each mutational event.mutation model: A significant result (RST significantly

�pRST) suggests that mutations contributed to genetic Hence, one possible application of the allele size ran-
domization procedure is to test whether the mutationdifferentiation (e.g., because � � m in an island model)

and that the mutation process follows at least partially process follows a KAM (Table 2, case 3). For this pur-
pose, randomizing allele sizes can be applied on anya SMM (the test remains valid under deviations from

the SMM). Neutrality with respect to natural selection statistic based on allele size, not only R-statistics but also
various genetic distances for stepwise mutation modelsis, however, assumed. When the test is significant, FST is

likely to provide a biased estimate of gene flow parame- such as (��)2 (e.g., Goldstein et al. 1995b; Shriver et
al. 1995), or simply on the total variance in allele size.ters, but it cannot be concluded a priori that RST would

necessarily perform better given its larger variance It is, however, already well established that the large
majority of microsatellite loci do not conform to a KAM,(which is even more pronounced when mutations of

more than one step can occur; Zhivotovsky and Feld- and the interesting question about the mutation process
of microsatellites is rather how it deviates from an idealman 1995) and given the bias it may suffer when the

mutation process deviates from the assumptions of the SMM (Estoup and Angers 1998). Therefore, using the
allele size permutation procedure to test for the KAMGSM (Estoup and Angers 1998). A nonsignificant re-

sult (RST not significantly different from pRST) would is not discussed further.
A second application of the allele size permutationsuggest that allele size is not informative for population

differentiation, because the mutation process is not step- procedure, here assuming a priori that mutations follow
at least partially a SMM-like process, is to test whetherwise-like and/or because mutations had not contributed

to differentiation (e.g., because � � m in an island mutation has contributed to population divergence (Ta-
ble 2, case 2). In other words, we can test whether themodel). In this case, FST should surely be preferred over

RST (although it would not ensure that FST provides a migration rate (m) among populations, or the recipro-
cal of the number of generations (t) since populationcorrect estimate of gene flow given the many other

sources of bias related to population models; Whitlock divergence, is large compared to the mutation rates
(� � m or � � 1/t, respectively; Table 2, cases 2a andand McCauley 1999).

Which hypotheses can be tested and with which statis- 2b). The allele size permutation test is the most interest-
ing to address this question, because there is enoughtics? Simulations permit validation of the allele size per-



1471Testing Microsatellite Allele Sizes

evidence that most microsatellites follow a SMM-like
process (e.g., Ellegren 2000; Xu et al. 2000; Zhu et al.
2000; Renwick et al. 2001). However, for this purpose,
allele size permutation cannot be applied to any statistic
based on allele size: It performs well on R-statistics,
which are ratios of allele size variance components, but
not on genetic distances such as the Goldstein et al.
(1995a) (��)2 statistic, which is a between-populations
component of allele size variance. The reason is that
random permutations of allele sizes not only remove
the within-population covariance between allele sizes
for different alleles, but also modify the allele size vari-
ance under SMM or GSM, because the expected fre-
quency distribution of allele sizes is not uniform (Don-

Figure 1.—Control of the validity of the allele size permuta-nelly 1999). Statistics expressing a component of allele
tion test when applied on RST (�) or (��)2 (�) statistics com-size variance, such as the (��)2 statistic, will always be
puted between two samples from a population at mutation-

affected by a change of the allele size variance, no matter drift equilibrium under the SMM. The percentage of loci with
whether or not mutations contributed to differentia- the null hypothesis rejected (%RHo) is shown as a function

of the type I error rate criterion (	), and the dashed linetion. On the contrary, statistics based on a ratio of vari-
shows the %RHo � 	 relationship expected under the nullance components, such as RST, will not be affected if the
hypothesis for a valid testing procedure. The null hypothesiswithin- and among-populations components of variance
of interest is whether the mutation rate is negligible, given

are multiplied by factors having the same expectations. that the mutation process is stepwise-like (Table 2, case 2).
The simulations presented hereafter show that this is Results show that the allele size permutation procedure ap-

plied on (��)2 is not suited to test this hypothesis.what occurs when there is no within-population covari-
ance between allele sizes for different alleles (i.e., differ-
entiation due to drift and not stepwise mutations).

lated: (1) an island model at drift-migration-mutationTo show that the allele size permutation test is ade-
equilibrium, (2) a model of two isolated populationsquate for the RST statistic but not the (��)2 statistic when
having diverged from a common ancestral populationtesting m 
 � or 1/t 
 � (under the a priori assumption
at mutation-drift equilibrium, and (3) a linear stepping-that the mutation process is stepwise-like; Table 2, cases
stone model (gene flow restricted to adjacent popula-2), we simulated a random-mating population of diploid
tions) at drift-migration-mutation equilibrium. The is-individuals (population size N � 1000 individuals) at
land model was composed of 10 populations, consistingmutation-drift equilibrium (� � 0.001) under the SMM.
of 100 individuals each, and new generations were ob-The allele size permutation test (1000 randomizations)
tained by drawing genes at random from the populationwas then applied on RST and (��)2 computed between
with probability 1 � m or from the other populationstwo independent samples (sample size n � 100 individu-
with probability m. The isolated population model wasals) from that population for each of 200 simulated
composed of two random-mating populations, con-loci (the two samples thus represent undifferentiated
sisting of 500 individuals each, and having diverged forsubpopulations). The computer programs used for sim-
t generations. The stepping-stone model was composedulations and computations are described below. We re-
of 30 aligned populations, consisting of 50 individualsport the percentage of loci for which the tests were
each, and new generations were obtained by drawingsignificant (%RHo) according to the type I error rate
genes at random from the population with probabilitycriterion (	, the probability of rejecting the null hypoth-
1 � m or from the two adjacent populations with proba-esis when it is true). Because the null hypothesis to be
bility m.tested (1/t 
 �) is met by simulations, a valid testing

The genetic parameters simulated were the following:procedure must ensure that %RHo � 	; otherwise it
At the initial stage all populations were fixed for onemeans that the procedure is not adequate to test this
allele; 10 loci were simulated with mutations followingnull hypothesis. Figure 1 shows that the allele size ran-
a SMM and � � 10�3 at all loci without size constraints.domization testing procedure is indeed valid when ap-
Simulations were run for a sufficient time to reach aplied on RST but not on (��)2.
steady state for total- and within-population gene diver-Power of the test under SMM: To investigate the
sity parameters, and then a sample of individuals repre-power of the test when testing if mutations contributed
sentative of common experimental studies was extractedto population differentiation under the SMM (Table 2,
and analyzed. To obtain accurate estimates, 200 repli-cases 2), we checked the procedure on artificial data
cates were run for each set of conditions. Simulationssets with realistic sample sizes derived from Monte Carlo
were carried out using the software EASYPOP ver. 1.7.4simulations of populations made of diploid hermaphro-

dites. Three sets of demographic situations were simu- (Balloux 2001). Allele size permutation tests (with
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1000 randomizations) and computations of FST and RST single population of N � 1000 individuals (for the iso-
lated population model), the average heterozygosityon the samples extracted were done with the program

SPAGeDi (Hardy and Vekemans 2002). Single-locus and average variance of allele size were equal to He �
0.68 and V � 1.96, respectively, with a mean numberand multilocus FST and RST were estimated following

Weir and Cockerham (1984) and Michalakis and of alleles per locus of 5.8 (range, 3–11 alleles). These
values are close to their expectations at mutation-driftExcoffier (1996), respectively. It should be noted that

this RST (an estimator of the parameter called �ST by equilibrium (Estoup and Cornuet 1999): Under strict
SMM, He � 1 � (1 � 8N�)�0.5 � 0.67 and V � 2N� �Rousset 1996) differs somewhat from Slatkin’s (1995)

original definition (Michalakis and Excoffier 1996) 2. In the island model with 10 populations of 100 individ-
uals each (d � 10, N � 100), average RST values werebut is better suited for comparison with the FST estimator

of Weir and Cockerham (1984) (called � by these au- equal to 0.019, 0.197, 0.677, and 0.924 for m � 10�1,
10�2, 10�3, and 10�4, respectively (Figure 2A), in agree-thors) and for demographic parameter estimations

(Rousset 1996). Both these FST and RST estimators pro- ment with the expected values approximately equal to
1/(1 � 4Nm d/(d � 1)) � 0.022, 0.184, 0.692, andceed by a standard hierarchical ANOVA where the ob-

served variance (2) of allele identity per locus and per 0.957, respectively (Rousset 1996). In the isolated pop-
ulations model (N � 500), divergence time t can beallele (FST), or the variance of allele size per locus (RST),

is partitioned into three components (random effects): estimated from the relationship RST/(1 � RST) � t/2N
(Slatkin 1995; Rousset 1996), giving estimates of t �among populations (2

a), among individuals within pop-
ulation (2

b), and between genes within individual within 97, 1132, and 11,301 for actual values of 100, 1000, and
10,000 generations, respectively. Finally, in the linearpopulation (2

c). FST and RST are then estimated as 2
a/

(2
a � 2

b � 2
c) (single-locus RST) or �2

a/�(2
a � 2

b � stepping-stone model (N � 50, m � 0.1), pairwise RST/
(1 � RST) values increased linearly with the distance2

c), where the summations apply over all loci (multilo-
cus RST), all alleles of a locus (single-locus FST), or all between populations (Figure 2C), giving a regression

slope equal to 0.054, in agreement with the approximatealleles and loci (multilocus FST; Excoffier 2001).
For the island model, simulations were run for 5000 expected value 1/(4Nm) � 0.050 for the linear stepping-

stone model (Rousset 1997).generations with migration rates among populations
varying from 10�4 to 10�1 (i.e., m � 0.1–100�) according Results from all simulations confirm that mean pRST

values (i.e., mean value computed after random permu-to the runs. Global RST, FST, and pRST (for 1000 random-
izations) were computed on a total sample of 300 indi- tations of allele size) are very close, though not exactly

equal, to the FST values (Figure 2). For example, in theviduals (30 individuals from each population). For the
isolated populations model, a single population of 1000 island model, the mean and standard deviation of the

difference between FST and mean pRST values per locusindividuals was simulated for 5000 generations, and
then it was divided into two isolated subpopulations of were equal to 0.003 � 0.007, 0.008 � 0.012, and 0.010 �

0.110 for m � 10�2, 10�3, and 10�4, respectively. Hence,500 individuals that were run for 30–10,000 additional
generations (i.e., 1/t � 0.1–33�). RST, FST, and pRST (for mean pRST values were on average slightly lower than

FST values although, for a given locus, the difference1000 randomizations) were computed on a total sample
of 100 individuals (50 individuals from each subpopula- between the two could be quite substantial, especially

under very low migration rates. For the other simula-tion). For the stepping-stone model, 10,000 generations
were simulated with a migration rate of 0.1 (0.05 be- tions, mean pRST values were generally slightly higher

than FST (Figure 2, B and C). We also observed that thetween any two adjacent populations). Analyses were car-
ried out on a sample of 20 individuals from each of the discrepancy between FST and mean pRST was much lower

for multilocus than for single-locus estimates.30 populations (total sample size of 600 individuals).
Pairwise FST/(1 � FST) and RST/(1 � RST) ratios were As expected, RST values are similar to FST values when-

ever m 
 � � 0.001 (island model), 1/t 
 � (divergingcomputed for each pair of populations, and these values
were averaged over all pairs separated by 1, 2, 3, . . . , populations model), or populations are close (stepping-

stone model with m 
 �). On the contrary, RST becomes20 steps (20 distance classes). Allele size permutation
tests were applied on averaged pairwise RST/(1 � RST) considerably larger than FST when m � � (island model),

1/t � � (diverging populations model), or when popu-ratios per distance class to provide pRST/(1 � pRST) val-
ues per distance class (1000 permutations). Here, pair- lations are separated by more than five steps (stepping-

stone model; Figure 2).wise FST/(1 � FST) and RST/(1 � RST) ratios were com-
puted because theory predicts an approximate linear To assess the power of the allele size permutation

test, we present in Figure 2 (graphs on the right) therelationship with the linear distance between popula-
tions in one-dimensional isolation-by-distance models percentage of statistically significant tests (%RHo)

among 200 simulation replicates (using 	 � 5%) ac-(Rousset 1997).
The validity of some of the simulation results could be cording to (1) the migration rate m (island model), (2)

the divergence time t in number of generations sinceverified by comparing them to theoretical expectations.
For example, after 5000 generations of simulation of a isolation (isolated two-population model), and (3) the



1473Testing Microsatellite Allele Sizes

Figure 2.—Simulation results
for (1) an island model with mi-
gration rate m (A), (2) a two-popu-
lation model isolated for t genera-
tions (B), and (3) a linear step-
ping-stone model of 30 popula-
tions (C). Graphs on the left show
RST (�), FST (�), and mean pRST

(�) values (mean multilocus esti-
mates based on 10 loci and 200
replicates) according to m (A), t
(B), or the number of steps sepa-
rating populations (C). In C, aver-
aged pairwise RST/(1 � RST), FST/
(1 � FST), and mean pRST/(1 �
pRST) ratios over all pairs separated
by given numbers of steps are rep-
resented. Graphs on the right il-
lustrate the power of the allele size
permutation tests by giving the
percentages of significant tests
(%RHo) on RST estimates [or aver-
age pairwise RST/(1 � RST) ratios]
based on a single locus (�) or 10
loci (�) (i.e., multilocus estimate)
and considering a type I error rate
criterion 	 of 5% (dotted line).
The symbols (� and �) on the
horizontal axes of graphs A and B
show the values at which the mean
square errors of FST and RST are
approximately equal.

distance d in number of steps between populations very similar to those of the island model if m is replaced
by 1/t (Figure 2B). Here, however, tests seem less power-(stepping-stone model). This is done for tests applied

to each locus as well as to a multilocus estimate based ful than in the simulated island model (e.g., for 10 loci,
%RHo � 50% when 1/t � � in the isolated populationon 10 loci.

In the island model, %RHo approaches 	 for rela- model, and m � 0.3� in the island model), which is
likely due to the smaller sample size (100 vs. 300 individ-tively high migration rates (i.e., m � 10�1–10�2 � 10–

100�), in accordance with our a priori expectation that uals) and the lower number of populations sampled
(2 vs. 10). Balloux and Goudet (2002) showed indeedwe should not detect a significant effect when m 
 �

(Figure 2A). On the contrary, for lower migration rates, that the variance of RST increases substantially with fewer
populations sampled. In the stepping-stone model,mutation is no longer negligible compared to migration

and the proportion of significant tests increases above %RHo increases with the distance separating popula-
tions, but reaches a plateau beyond eight steps at �60%	, reaching 88 and 100% when m � 10�4 (m � 0.1�)

for tests on a single locus or 10 loci, respectively (Figure for estimates based on 10 loci and only 20% for single-
locus estimates (Figure 2C). Surprisingly, %RHo is al-2A). Tests based on 10 loci seem actually quite powerful

for typical sample sizes encountered in experimental ready significantly larger than 	 for populations sepa-
rated by just one step and exchanging migrants at astudies (300 individuals here), as 100% of the tests were

significant when m � � and already 24% when m � high rate (m/2 � 0.05) relative to the mutation rate
(� � 0.001).10�. Results of the two isolated population models are
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Usefulness of the test to determine the most appro- estimated as �ln(1 � FST) (Reynolds et al. 1983), but
this leads essentially to the same results]. This occurspriate statistics: To verify whether the test provides an

adequate guideline to choose between RST and FST when because whenever FST or RST approaches 1, the inferred
� quickly takes enormous values, so that the impact ofassessing population differentiation, mean square er-

rors (MSEs) of FST and RST were computed. The MSE is the larger variance of RST relative to FST is greatly ampli-
fied in the inferred �, although �R is much less biaseda synthetic measure of the efficiency of an estimator

combining bias and variance (MSE � bias2 � variance). than �F for � � 1. The good news is that for multilocus
estimates we obtained MSE(�R) � MSE(�F) for t � 500It has already been used to compare the efficiency of

FST and RST estimators (Balloux and Goudet 2002) or and MSE(�R) � MSE(�F) for t � 500, as previously found
for MSE(RST) � MSE(FST). Similarly, for the islandgene flow estimates based on FST or RST (Gaggiotti et

al. 1999). MSEs were computed as �(i � e)2/n, where model, where Nm can be estimated as NmF � (1/FST �
1)/4 and NmR � (1/RST � 1)/4, the m values corre-i is the FST or RST estimate of the ith replicate, n is the

number of replicates (n � 200), and e is the expected sponding to MSE(NmF) � MSE(NmR) were exactly equal
to these obtained for MSE(RST) � MSE(FST) for bothvalue given the demographic parameters. The expected

value is e � 1/(1 � 4Nmd/(d � 1)) in the case of the single- and multilocus estimates. Thus, the usefulness
of the allele size permutation test to determine whichisland model (with N � 100 and d � 10), and e � t/

(2N � t) in the case of the isolated population model of FST or RST is the most adequate for inferential purposes
seems to be quite general, except probably with low(with N � 500). These are the values expected for RST

under SMM and for FST under IAM (or KAM) and a low sample size and/or low number of loci, when inferences
are in any case doubtful because associated variancesmutation rate (Slatkin 1995; Rousset 1996). Note that

e is not the expected FST under the conditions of the are too large.
Application examples: To illustrate the utility andsimulations (relatively high SMM and �), but only a

good approximation when mutation can be neglected. power of the allele size permutation test with real data
we present three examples of published data sets thatFor the island model and � � 0.001 (SMM), with

migration rate varying from 0.0001 to 0.1, the ratio we reanalyzed. These data were collected to assess popu-
lation differentiation and check for isolation by distanceMSE(RST)/MSE(FST) varied, respectively, from 0.06 to

2.1 for single-locus estimates and from 0.02 to 2.3 for in three different organisms. We computed global or
pairwise FST and RST statistics as described above andmultilocus estimates based on 10 loci. The migration

rate at which MSE(RST) � MSE(FST) was between m � applied the allele size permutation tests to obtain pRST

values. These analyses were performed with SPAGeDi.0.001 and 0.002 for single-locus estimates and between
m � 0.003 and 0.005 for multilocus estimates. As can Biomphalaria pfeifferi, a selfing snail recently introduced

in Madagascar: Biomphalaria pfeifferi, an intermediatebe observed in Figure 2A, these migration rate limits
under which RST performs better than FST, and above host of a parasitic trematode causing intestinal bilharzia-

sis, is a hermaphroditic freshwater snail distributed overwhich the reverse occurs, closely match the migration
rate under which the allele size permutation test be- most of Africa, the Middle East, and Madagascar. Mada-

gascar was relatively recently invaded by this snail, proba-comes often significant (i.e., %RHo � 30%). The same
pattern is observed for the isolated populations model: bly as a result of human occupation a few hundred years

ago (Charbonnel et al. 2002a). Moreover, according toFor t varying from 30 to 10,000 generations, MSE(RST)/
MSE(FST) varied from 2.37 to 0.41 and from 4.00 to 0.01 a broad-scale survey of microsatellite variation throughout

Madagascar, bottleneck (Cornuet and Luikart 1996)for single-locus and multilocus estimates, respectively,
and MSE(RST) � MSE(FST) for t � 2000 (i.e., 2/�) and and admixture (Bertolle and Excoffier 1998) tests

suggest that at least three independent introductionst � 500 (i.e., 0.5/�) for single-locus and multilocus
estimates, respectively. Hence, the test becomes fre- from genetically differentiated sources occurred (Char-

bonnel et al. 2002a). A small-scale study of microsatellitequently significant when MSE(RST) is close to MSE(FST)
(Figure 2B). variation also reveals that populations experienced re-

current bottlenecks and that migration has been fre-These results strongly suggest that the allele size per-
mutation test is well suited to determine which of FST quent within watersheds but rare among them (Char-

bonnel et al. 2002b). This population dynamic and theor RST is the most adequate for demographic parameters
inferences, at least on the basis of the lowest MSE crite- high selfing rate experienced by this snail explain the

high genetic differentiation among populations ob-rion. However, it must be pointed out that the statistic
with lowest MSE is not necessarily the statistic that will served in Madagascar: FST � 0.80 and 0.58 for broad and

small scales, respectively (Charbonnel et al. 2002a,b).provide the lowest MSE in the demographic estimate,
because demographic estimates are usually not linear In this particular context, we can formulate a hypothe-

sis regarding the information content that microsatellitefunctions of FST or RST. For example, in the isolated
population model, the � � t/N estimates that can be allele sizes could bear. Given the postulated recent intro-

ductions of this snail in Madagascar, we expect thatderived using �F � 2FST/(1 � FST) and �R � 2RST/(1 �
RST) give MSE(�R) � MSE(�F) for all simulated diver- mutation has not contributed to differentiation among

populations originating from the same introduction butgence time with single-locus estimates [�F can also be
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TABLE 3

Differentiation among populations of Biomphalaria pfeifferi at different scales

No. of
Locus alleles RST pRST (95% C.I.) FST

Local scale
Multilocus 0.571 NS 0.561 (0.438–0.676) 0.588

Bpf12 3 0.560 0.716 (0.457–0.930) 0.712
Bpf2 5 0.607 NS 0.594 (0.222–0.652) 0.645
Bpf1 6 0.483 NS 0.620 (0.417–0.852) 0.605
Bpf10 9 0.418 NS 0.578 (0.381–0.733) 0.596
Bpf9 14 0.589 NS 0.546 (0.380–0.714) 0.550
Bg16 16 0.453 NS 0.493 (0.234–0.675) 0.525

Large scale
Multilocus 0.960*** 0.788 (0.676–0.903) 0.809

Bpf5 4 0.999 0.980 (0.929–0.999) 0.985
Bpf1 5 0.823 NS 0.798 (0.746–0.840) 0.798
Bpf2 8 0.954* 0.844 (0.637–0.960) 0.857
Bpf8 9 0.999*** 0.835 (0.491–0.993) 0.895
Bg16 10 0.809 NS 0.775 (0.603–0.897) 0.783
BgE5 12 0.897*** 0.718 (0.553–0.856) 0.724
Bpf10 13 0.823 NS 0.834 (0.546–0.971) 0.852
Bpf9 18 0.812** 0.624 (0.431–0.776) 0.636

The 95% confidence interval given with pRST is the 95% central pRST values obtained after random permuta-
tions of the allele sizes. P values of allele size permutation tests on RST are denoted as follows: NS, nonsignifi-
cant; *P � 0.05; **P � 0.01; ***P � 0.001. No test was done for the loci with less than five alleles because
the number of permutation configurations is too low to carry out a test at a 5% level.

has contributed to differentiation among populations 3). Applied to each locus, these tests were also significant
for four out of eight loci at the broad scale but for noneoriginating from different introductions (at least if the

source populations had diverged over enough time). at the local scale.
The analysis of average pairwise multilocus FST andThe places and timing of the introductions are not

RST values per distance class at the broad scale showsknown, but populations from a single watershed are
the following (Figure 3):likely to originate from a single introduction or, if geno-

types from different introductions mixed in a watershed,
1. Differentiation between populations occupying themigration within the watershed is likely to have pre-

same watershed is much lower than that betweenvented the buildup of a phylogeographical pattern at
populations from different watersheds, even for pop-this scale. Therefore, we can expect RST to be close to
ulations separated by the same spatial distance. ThisFST for populations belonging to the same watershed
is in line with the higher migration rate detectedand significantly larger than FST for populations from
within watersheds than among them (Charbonneldifferent watersheds when the latter were originally col-
2002b).onized by individuals from independent introductions.

2. A pattern of isolation by distance is detected within
To test this hypothesis, we reanalyzed data from small-

watersheds for both FST and RST (Mantel tests: P �
scale and large-scale studies by Charbonnel et al.

0.007 and 0.021, respectively). Among watersheds,
(2002a,b). Global RST and FST values as well as pairwise

such a pattern is not detected for FST but is for RSTRST and FST values between populations were computed. (Mantel tests: P � 0.18 and 0.002, respectively).
Distinguishing pairs of populations within or among 3. Within watersheds, RST’s are not significantly higher
watersheds, pairwise values were regressed on spatial than pRST’s, whereas among watersheds, RST’s are sig-
distances (Mantel tests were used to assess the signifi- nificantly higher than pRST’s for all distance classes
cance of the regression slopes), and average pairwise but the first one.
values were computed for a set of distance classes (de- 4. Average pairwise pRST values are always somewhat
fined in such a way that each contained �33 pairs of lower than pairwise FST values but they follow closely
populations). One thousand random permutations of their pattern of variation with spatial distance.
the allele sizes provided a distribution of pRST values,
95% confidence intervals covering the 25th to the 975th In conclusion, at a local scale, RST values are close to
ordered values, and P values testing if RST � pRST. FST values, and allele size permutation tests do not reveal

Multilocus RST values are significantly higher than any significant contribution of stepwise mutations to
population differentiation. On the contrary, at a largemean pRST at a broad scale but not at a local scale (Table
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Figure 3.—Average pairwise FST (� and �), RST (� and �), and mean pRST (� and �) values among populations of Biomphalaria
pfeifferi throughout Madagascar for a set of distance classes, distinguishing comparisons between populations within watersheds
(�, �, �) and among watersheds (�, �, �). The dotted lines represent the range of the 95% central ordered pRST values (i.e.,
after allele size randomization). Each distance class contains 32–35 pairs of populations.

scale, RST values are substantially higher than FST values tively extended in a wind-pollinated species, we may
and allele size permutation tests demonstrate that shifts expect that stepwise-like mutations have not contributed
in average allele sizes contribute significantly to popula- significantly to population differentiation in Bulgaria.
tion differentiation. Significant tests on RST values are The data set of Heuertz et al. (2001) was thus reana-
expected if populations had diverged for a sufficiently lyzed to compare average pairwise FST and RST values
long time and/or if populations exchanged migrants at between populations, distinguishing pairs within and
a rate similar or inferior to the mutation rate. The results among Bulgarian regions, and testing RST values by allele
are thus very consistent with a priori expectations given size permutations (1000 randomizations).
that (1) at a large scale, both these conditions are proba- Mean pairwise multilocus estimates were equal to
bly met because populations far apart in Madagascar FST � 0.074, RST � 0.091 within regions and FST � 0.097,
probably originated from relatively recent and indepen- RST � 0.180 among regions (Figure 4). Hence, whereas
dent introductions from source continental populations differentiation increases slightly from small to large geo-
isolated for a long time, and migration rate is low among graphical scales according to FST, it nearly doubles ac-
watersheds, and (2) at a local scale, particularly within cording to RST. Moreover, average pairwise RST is much
watersheds, none of these conditions are likely to be met. larger than FST among regions, but only slightly larger

Fraxinus excelsior, a widespread European tree: Fraxinus than FST within regions. Within regions, observed RST’s
excelsior (Oleaceae, common ash) is a widespread Euro- are always within the 95% range of central pRST, but
pean wind-pollinated tree species found mostly in among regions, the multilocus RST estimate as well as
floodplain locations and with a scattered distribution the estimate for locus FEM19 is larger than the 95%
within natural forests. The distribution of chloroplastic range of pRST (Figure 4), demonstrating that stepwise-
DNA (cpDNA) haplotypes throughout Europe suggests like mutations contributed to population differentiation
that F. excelsior was located in at least three different at the large geographical scale for at least one locus.
refuges during the last ice age, one putative refuge being Several causes may account for the significant allele
the Balkan area (G. G. Vendramin, unpublished data). size effect on population differentiation among regions
Heuertz et al. (2001) analyzed microsatellite polymor- in Bulgaria, for example:
phism in 10 Bulgarian populations (Balkan area) from

1. The pattern may reflect isolation by distance. How-three regions (321 individuals). Populations were sepa-
ever, it seems unlikely that migration rate amongrated by 0.5–22 km within regions and 120–300 km
regions is weak compared to the mutation rate givenamong regions.
that pollen is wind dispersed.In the absence of evidence of long-term divergence

2. The pattern may be due to postglacial recolonizationbetween Bulgarian populations (no evidence of differ-
ent refuges), and given that gene flow should be rela- from different refuges. There is, however, no evi-
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ability must be very limited, probably as a consequence
of limited seed dispersal ability and the self-incompati-
bility system that prevents a potential newcomer from
founding a new population on its own (Colas et al.
1997; Fréville et al. 2001). Patterns of isozyme (Colas
et al. 1997) and microsatellite (Fréville et al. 2001)
variation show high levels of differentiation among pop-
ulations, with FST � 0.35 and 0.23, respectively, despite
the narrow range of the species (2.3 km between the
two most distant populations). High differentiation at
such a small scale cannot be attributed to the mating
system as the species is self-incompatible. It most likely
results from small population sizes and low gene flow
among populations. It might also be a consequence of
more or less recurrent bottlenecks when new popula-
tions are founded (although the turnover should be
relatively slow, given that no population extinction or
foundation has been observed since 1994, when C. corym-Figure 4.—Mean pairwise RST, mean pRST, and FST values

between Bulgarian populations of Fraxinus excelsior for popula- bosa populations began to be closely surveyed, and her-
tions belonging to the same region (A) or different regions barium data show that five of the six populations were
(B). Values are given for each locus and the multilocus esti-

known �100 years ago).mates. Bars of pRST indicate the mean pRST values over 1000
In this context it is interesting to question whetherallele size permutations, and the corresponding intervals give

gene flow among populations is sufficiently low to per-the range of the 95% central pRST values.
mit divergence by mutations. The higher observed FST

value at allozyme loci than at microsatellite loci could
indeed be caused by high mutation rates of microsatel-dence of different refuges from the maternally inher-
lites, provided that � � m. Fréville et al. (2001) pointedited cytoplasmic DNA as the same unique haplotype
out that this hypothesis was also supported by the factoccurs in all three regions (M. Heuertz, unpub-
that FST values at the two most polymorphic microsatel-lished data).
lite loci (12B1 and 21D9, Table 4), the ones likely to3. The pattern may reflect human-mediated introduc-
have the highest mutation rates, were lower than thosetion of Fraxinus from remote regions.
for the two loci with intermediate levels of polymor-4. The pattern may reflect locally occurring hybridiza-
phism (13D10 and 28A7, Table 4).tion between F. excelsior and a related species such

The allele size randomization procedure is adequateas F. angustifolia or F. pallisiae. Given that a total of
to address this question. Therefore, global RST, pRST, andfour ash species (the former three and F. ornus) are
FST were computed for microsatellite loci as describedfound in Bulgaria and that different species occur
above, and RST was compared against the distributionin the same forests (M. Heuertz, personal observa-
of 1000 pRST values. Permutation tests did not detecttion), this latter hypothesis merits further investiga-
any RST value significantly �pRST (Table 4). This suggeststion. In any case, the observation that a significant
thus that differentiation is caused mainly by drift andeffect of stepwise-like mutations is observed on a
that gene flow, m, and/or the reciprocal of divergencelarge scale but not on a small one remains very consis-
time, 1/t, are large compared to the mutation rate,tent with a priori expectations, as nearby populations
�. This result also implies that FST should be a bettershould exchange genes at a relatively high rate.
estimator than RST of population differentiation for this

Centaurea corymbosa, a rare and narrow-ranged cliff-dwell- species. Actually, given the small population sizes
ing herb: Centaurea corymbosa (Asteraceae) is a short-lived (Colas et al. 1997, 2001), drift is expected to be high.
perennial herb species distributed over a very narrow For example, if populations had effective sizes of �100
range (within a 3-km2 area of a calcareous massif along individuals (there is actually much variance among pop-
the French Mediterranean coast), where it occurs in ulations) and conformed to an island model (there are
only six small populations (Colas et al. 1997). It has actually some isolation-by-distance effects), a value of
specialized into an extreme habitat: the top of limestone m � 0.006 would account for the observed FST, a value
cliffs where few other plant species survive. On more larger than typical microsatellite mutation rates (10�3–
fertile ground, C. corymbosa is outcompeted, so that suit- 10�4). Assuming that these populations have been in
able habitat is highly fragmented, appearing as small place for a sufficiently long time to potentially permit
islands dispersed in the landscape. Given that the spe- differentiation by mutations (shifting allele sizes), the
cies occupies only a small fraction of these “islands” absence of such mutation-driven differentiation also

suggests that the migration rate is larger than the muta-(the whole massif extends over 50 km2), colonization
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TABLE 4

Differentiation among populations of Centaurea corymbosa, estimated by global RST, mean pRST, and FST

values per locus and for a multilocus average

No. of
Locus alleles RST pRST FST

Multilocus 0.259 NS 0.222 (0.119–0.342) 0.228
17E3 3 0.124 0.133 (0.124–0.153) 0.130
13B7 3 0.096 0.082 (0.048–0.096) 0.094
13D10 5 0.273 NS 0.339 (0.177–0.587) 0.341
28A7 7 0.288 NS 0.261 (0.066–0.526) 0.272
21D9 12 0.230 NS 0.182 (0.029–0.392) 0.181
12B1 15 0.276 NS 0.194 (0.020–0.399) 0.194

The 95% confidence interval given with pRST is the 95% central pRST values obtained after random permuta-
tions of the allele sizes. No test was done for loci with three alleles because the number of permutation
configurations is too low to carry out a test at a 5% level. P values of allele size permutation tests on RST are
denoted as follows: NS, nonsignificant (P � 0.05).

tion rate, so that new mutation variants spread over all signed-rank test on single-locus FST and RST estimates,
and Lugon-Moulin et al. (1999) used a bootstrappingpopulations.

Nonsignificant tests could also be due to a lack of procedure over loci. These approaches assume that FST

should be equal to RST if mutations can be neglected,power, so the test should be applied to additional micro-
satellite loci to confirm these results (presently, only which is true for the corresponding parameters (Rous-

set 1996), but not necessarily true for the estimatorsfour out of six loci had a sufficient number of alleles
to carry out permutation tests). Deviation from a SMM because they can be subject to different bias. Actually,

a difference in bias was detected in the simulation resultsat some loci could also reduce the power of the test.
For example, the dinucleotide locus 28A7 has six alleles where FST and RST were computed for two independent

samples from a single population (i.e., no actual differ-with sizes following a sequence of one repeat step plus
one allele at least six repeats smaller than the other entiation): The percentages of loci (�200) with RST �

FST were equal to 65 and 69% under KAM and SMM,ones. Although this pattern is not necessarily incompati-
ble with a pure SMM (e.g., Donnelly 1999), it might respectively, resulting in significant sign tests, although,

as parameters, FST and RST were both equal to zero. Thesuggest that a mutation of large effect created the out-
sider allele. allele size permutation test has the advantages that (1)

a test can be applied to each locus (mutation rate and
process are locus specific) and (2) RST is compared to

DISCUSSION
the same statistic but computed on data with random-
ized allele sizes, so that potential statistical bias on theComparison between measures of differentiation:

Comparisons of FST with RST values on microsatellite data compared statistics should be identical.
Comparison between FST and RST is similar to compar-have already been suggested for checking the impor-

tance of mutation vs. migration rates (e.g., Michalakis ing GST with NST on haplotypes (i.e., DNA sequences or
other nonrecombinant DNA variants, such as mitochon-and Veuille 1996; Ross et al. 1997; Estoup et al. 1998).

For example, in the brown trout (Salmo trutta), popula- drial or chloroplastic DNA; Pons and Petit 1996). In-
deed, GST is a measure of differentiation (very similartions sampled at a microgeographic scale showed similar

RST and FST estimates, whereas populations sampled at to FST) between haplotypes using “unordered” alleles
(i.e., not accounting for the similarities between haplo-a macrogeographic scale showed significantly higher

RST compared to FST, indicating that mutation becomes types) whereas NST is a measure based on “ordered”
alleles (i.e., accounting for the similarities between hap-important relative to migration at this scale (Estoup

and Angers 1998). Similarly, in a review of FST-RST data lotypes). Mathematically, GST � (hT � hw)/hT and NST �
(�T � �w)/�T, where h and � are measures of geneticanalyses, Lugon-Moulin et al. (1999) showed that RST

and FST are generally similar when the level of differenti- diversity and subscripts T and w refer to diversity mea-
sured over the total set of populations and within popu-ation is low, whereas RST is often superior to FST when

differentiation is high. The same trend was observed in lation, respectively (see Pons and Petit 1996 for details
and parameters estimation). The diversity measures htwo of the data sets reanalyzed in the present article (F.

excelsior and B. pfeifferi). (heterozygosity) depend only on haplotype frequencies
and are of the form h � 1 � �pi

2, where pi is the ithTo compare multilocus FST and RST estimates, Estoup
and Angers (1998) applied a nonparametric Wilcoxon allele frequency, which is equivalent to h � �i�j�ij pipj,
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where �ij � 0 if i � j and �ij � 1 otherwise. The diversity of the power of the test (Table 5). However, the reduc-
tion was substantial only under the strong range con-measures � depend also on haplotype divergence and
straint or when KAM-like mutations were included. Inare of the form � � �i�j �ij pi pj, where �ij now represents
the latter case, the effect was more pronounced whena degree of divergence between haplotypes i and j (�ij �
the allele size range was unconstrained, a condition0 if i � j but otherwise �ij varies, being, for example,
in which KAM-like mutations cause larger allele sizeproportional to the number of site differences between
changes. Hence, these results suggest that the allele sizei and j). NST is expected to be �GST when similar haplo-
permutation test remains quite powerful under alleletypes (i.e., haplotype pairs with low �ij) are associated
size constraint and multistep mutations. Deviations fromgeographically; otherwise they should have identical ex-
the SMM are probably a more important concern whenpectations. Thus, when comparing RST with FST or NST
inferring demographic parameters. Indeed, if a signifi-with GST, measures of differentiation based on ordered
cant test means that an FST-based demographic inferencevs. unordered alleles are compared, and the importance
is likely to be biased, it does not demonstrate that anof mutation relative to other causes of genetic differenti-
RST-based inference will be less biased, because the rela-ation (i.e., gene flow and divergence time) can be as-
tionships used in RST-based inferences usually assume asessed. Pons and Petit (1996) proposed a parametric
strict SMM or GSM (see also Estoup et al. 2002 for thetest to compare GST and NST, but a nonparametric test
impact of the SMM and its deviations on size homo-based on random permutations of genetic distances be-
plasy).tween haplotypes was later used and proved to be more

Impact of nonequilibrium dynamics and selection:efficient (Burban et al. 1999; Petit et al. 2002). The
In the simulations performed, constant population sizeallele size permutation test proposed in this article is
and/or mutation-drift equilibrium were assumed. Theseactually identical to permuting genetic distances be-
assumptions are also made when inferring demographictween alleles.
parameters (m or t) from the statistics measuring ge-Impact of deviations from a pure SMM on the power
netic differentiation or genetic distances. In many natu-of the test: In all the simulations realized to assess the
ral populations, these assumptions are not satisfied,power of the test, a strict SMM was considered. However,
potentially leading to strongly biased estimates (e.g.,the microsatellite mutation process is known to deviate
Whitlock and McCauley 1999; Zhivotovsky 2001).from a strict SMM (Lehman et al. 1996; Wierdl et al.
However, because it does not rely on such assumptions,1997; Zhivotovsky et al. 1997; Estoup and Angers
the allele size permutation test is expected to remain1998). For example, the polymorphism at dinucleotide
exact with respect to these violations in the sense that,microsatellite loci across the human genome is not con-
whatever the demographic processes, the test will indi-

sistent with a strict SMM but fits a model composed of
cate whether stepwise mutations contributed signifi-

a majority of single-step mutations and a small propor- cantly to genetic differentiation. It is, however, possible
tion of multistep mutations (Renwick et al. 2001). Simi- that the relative magnitude of � with respect to m or
larly, allele size constraints were invoked to explain the 1/t at which the test becomes significant is affected by
polymorphism at human trinucleotide loci (Deka et al. fluctuations of demographic parameters. This problem
1999). One advantage of the allele size permutation test merits further investigations.
is that it remains valid under these deviations, the only Neutrality of genetic markers with respect to natural
requirement being that mutation favors short allele size selection was also assumed throughout this article. How-
changes when testing for the impact of mutation relative ever, there are some lines of evidence that certain micro-
to drift (Table 2, case 2). Nevertheless, the power of satellite markers are involved in functional roles and
the test would likely be reduced if the mutation process could therefore be subject to natural selection (e.g.,
contained a significant proportion of mutations of large Kashi and Soller 1999). If selection acts on a microsa-
effect or if the range of allele sizes was constrained. To tellite locus, it could have a major impact on the out-
assess the loss of power of the test under these condi- come of the allele size randomization test as soon as it
tions, additional simulations of the island model were selects for different allele size ranges in different popula-
run allowing (1) for constraints on the allele size range tions, causing the test to be significant even if mutation-
(range � 30, 8, or 6) and (2) for nonstepwise mutations mediated differentiation is negligible relative to drift.
in the form of a proportion (20%) of double-step muta- On the contrary, if selection selects for the same range
tions (DSMs) or random mutations (KAM-like). Results of allele sizes everywhere, it will essentially cause con-
for m � 0.001 and � � 0.001 are given in Table 5. straints on the range of allele sizes. As shown previously,
Under these parameters, the range of allele sizes under the test is fairly robust to such constraints.
SMM and without constraint varies between 5 and 14 Other applications of the allele size permutation test:
per locus, with an average close to 8. Hence, adding a We suggested previously that the test can also be useful
range constraint of 30, 8, and 6 can be interpreted as no, in choosing between statistics used for phylogenetic in-
moderate, and strong range constraints, respectively. As ference. For example, Ds (Nei 1972), based on allele

identity information, and (��)2 (Goldstein et al.expected, deviations from SMM resulted in a reduction
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TABLE 5

Impact of deviations from the stepwise mutation model (SMM) on the power of the allele size
permutation test

1 locus 10 loci
Mutation Allele
model size range FST RST %RHo FST RST %RHo

100% SMM 30 0.55 0.67 44 0.55 0.68 96
(0.08) (0.14) (0.02) (0.04)

80% SMM 30 0.56 0.69 37 0.57 0.72 98
20% DSM (0.09) (0.14) (0.03) (0.05)
80% SMM 30 0.54 0.59 20 0.55 0.62 63
20% KAM (0.08) (0.16) (0.02) (0.05)

100% SMM 8 0.55 0.68 36 0.55 0.70 98
(0.09) (0.14) (0.03) (0.04)

80% SMM 8 0.57 0.66 29 0.57 0.68 91
20% DSM (0.10) (0.15) (0.03) (0.05)
80% SMM 8 0.58 0.65 26 0.58 0.66 77
20% KAM (0.09) (0.15) (0.03) (0.05)

100% SMM 6 0.55 0.65 23 0.56 0.67 86
(0.10) (0.15) (0.03) (0.05)

Deviations occur in the form of (1) constraints on allele size range and (2) occurrence (at a 20% rate) of
double-step mutations (DSM) or random mutations to any of the possible alleles (KAM). For single-locus and
multilocus (10 loci) estimates, averages (standard deviations) of FST and RST values are reported, as well as the
percentage of significant tests (%RHo) at a 5% confidence level (over 200 replicates). Simulations correspond
to an island model (see text for details) with migration rate m � 0.001 (mutation rate � � 0.001).

1995a,b; Goldstein and Pollock 1997), based on al- et al. (2001) demonstrated that H should perform better
than d 2 in most realistic conditions, except when individ-lele size information, are genetic distances between pop-

ulations with expectation 2�t, but under the IAM for uals result from the recent admixture of populations
having differentiated for a long time (with N� 
 1,Ds and under the SMM for (��)2. In the case of microsa-

tellites undergoing SMM-like mutations, Ds is strongly where N is the population size before admixture). Po-
tentially, the allele permutation test might help identifybiased for large t (Goldstein et al. 1995b), but for small

t it may remain relatively little biased and has a lower such situations where d 2 performs better than H. If the
source populations are known, it could be applied tovariance than (��)2 (Takezaki and Nei 1996). Could

the allele size permutation test applied to RST be useful an RST estimate between these populations. Otherwise,
it could be applied to an RIS estimate (the correlationfor choosing between Ds and (��)2? Using our simula-

tion results of the isolated populations model (results of allele sizes between genes sampled within individuals)
for the population after admixture. Although it is notnot shown), the analysis of the MSE of divergence time

estimates based on Ds vs. (��)2 permits us to conclude obvious that a significant test would necessarily indicate
that d 2 performs better than H, a nonsignificant testthe following: A nonsignificant test suggests that Ds

should be preferred for its low bias and variance. A indicates that allele size is uninformative and, hence, H
should surely perform better than d 2.significant test suggests that Ds is biased whereas (��)2

is essentially unbiased but, in terms of MSE, Ds still Beyond its practical use in choosing among statistics,
the test can provide insights into the evolutionary inter-performs better unless t is very large, especially with a

low number of loci. Hence, for the purpose of choosing pretation of data sets by giving information on the rela-
tive values of the mutation rate compared to the migra-between Ds and (��)2, the test is truly useful only when

it gives a nonsignificant result (see also Takezaki and tion rate or the time since population divergence.
Simulations showed indeed that the test becomes quiteNei 1996).

Assessing the significance of stepwise-like mutations powerful when the mutation rate, �, is higher than
the migration rate, m, or the reverse of the number ofto genetic differentiation may also have applications

when studying inbreeding depression. The latter is often generations since population divergence, 1/t. This is
useful information, especially if mutation rates areinvestigated by measuring the correlation between indi-

vidual fitness and some measure of inbreeding: either roughly known, because gene flow estimates directly
derived from FST or RST estimates are always expressed inthe observed heterozygosity, H, or the average squared

difference in repeat numbers between alleles within terms of Nm products, where N, the effective population
size, is often difficult to assess. However, only qualitativeindividuals, d 2 (Goudet and Keller 2002). Tsitrone



1481Testing Microsatellite Allele Sizes

Estoup, A., F. Rousset, Y. Michalakis, J.-M. Cornuet, M. Adria-insights on m or 1/t can probably be extracted from the
manga et al., 1998 Comparative analysis of microsatellite and

test, because the exact ratio � over m or � over 1/t at allozyme markers: a case study investigating microgeographic
differentiation in brown trout (Salmo trutta). Mol. Ecol. 7: 339–which the test becomes highly powerful depends on
353.the sample size, the number of loci, and probably the

Estoup, A., P. Jarne and J.-M. Cornuet, 2002 Homoplasy and muta-
diversity of each locus. With many loci, a value of � � tion model at microsatellite loci and their consequences for popu-

lation genetics analysis. Mol. Ecol. 11: 1591–1604.0.1m can already lead to a significant test, whereas with
Excoffier, L., 2001 Analysis of population subdivision, pp. 271–324one locus and a small sample size, � might exceed 10m

in Handbook of Statistical Genetics, edited by D. J. Balding, M.
to obtain a significant test with high probability. Bishop and C. Cannings. John Wiley & Sons, Chichester, UK.
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Charbonnel, N., B. Angers, R. Rasatavonjizay, P. Brémond and and among Bulgarian populations of the common ash (Fraxinus
P. Jarne, 2002b Evolutionary aspects of the metapopulation excelsior L.). Mol. Ecol. 10: 1615–1623.
dynamics of Biomphalaria pfeifferi, the intermediate host of Schisto- Jarne, P., and J. L. Lagoda, 1996 Microsatellites, from molecules
soma mansoni, in Madagascar. J. Evol. Biol. 15: 248–261. to populations and back. Trends Ecol. Evol. 11: 424–429.

Colas, B., I. Olivieri and M. Riba, 1997 Centaurea corymbosa, a cliff- Kashi, Y., and M. Soller, 1999 Functional roles of microsatellites
dwelling species tottering on the brink of extinction: a demo- and minisatellites, pp. 10–23 in Microsatellites: Evolution and Appli-
graphic and genetic study. Proc. Natl. Acad. Sci. USA 94: 3471– cations, edited by D. B. Goldstein and C. Schlötterer. Oxford
3476. University Press, Oxford.

Colas, B., I. Olivieri and M. Riba, 2001 Spatio-temporal variation Kimmel, M., and R. Chakraborty, 1996 Measures of variation at
of reproductive success and conservation of the narrow-endemic DNA repeat loci under a general stepwise mutation model. Theor.
Centaurea corymbosa (Asteraceae). Biol. Conserv. 99: 375–386. Popul. Biol. 50: 345–367.

Cornuet, J.-M., and G. Luikart, 1996 Description and power analy- Kimmel, M., R. Chakraborty, D. N. Stivers and R. Deka, 1996
sis of two tests for detecting recent population bottlenecks from Dynamics of repeat polymorphisms under a forward-backward
allele frequency data. Genetics 144: 2001–2014. mutation model: within- and between-population variability at

Crow, J. F., and K. Aoki, 1984 Group selection for a polygenic microsatellite loci. Genetics 143: 549–555.
behavioural trait: estimating the degree of population subdivi- Lehman, T., W. A. Hawlay and F. H. Collins, 1996 An evaluation
sion. Proc. Natl. Acad. Sci. USA 81: 6073–6077. of evolutionary constraints on microsatellite loci using null alleles.

Deka, R., S. Guangyun, D. Smelser, Y. Zhong and M. Kimmel, 1999 Genetics 144: 1155–1163.
Rate and directionality of mutations and effects of allele size Lugon-Moulin, N., H. Brünner, A. Wyttenbach, J. Hausser and
constraints at anonymous, gene-associated, and disease-causing J. Goudet, 1999 Hierarchical analyses of genetic differentiation
trinucleotide loci. Mol. Biol. Evol. 16: 1166–1177. in a hybrid zone of Sorex araneus (Instectivora: Soricidae). Mol.

Donnelly, P., 1999 The coalescent and microsatellite variability, Ecol. 8: 419–431.
pp. 116–128 in Microsatellites: Evolution and Applications, edited by Michalakis, Y., and L. Excoffier, 1996 A genetic estimation of
D. B. Goldstein and C. Schlötterer. Oxford University Press, population subdivision using distances between alleles with spe-
Oxford. cial reference for microsatellite loci. Genetics 142: 1061–1064.

Ellegren, H., 2000 Heterogeneous mutation processes in human Michalakis, Y., and M. Veuille, 1996 Length variation of CAG/
microsatellite DNA sequences. Nat. Genet. 24: 400–402. CAA trinucleotide repeats in natural populations of Drosophila

Estoup, A., and B. Angers, 1998 Microsatellites and minisatellites melanogaster and its relation to recombination rate. Genetics 143:
for molecular ecology: theoretical and empirical considerations, 1713–1725.
pp. 55–86 in Advances in Molecular Ecology, edited by G. R. Car- Nei, M., 1972 Genetic distance between populations. Am. Nat. 106:
valho. IOS Press, Amsterdam. 283–292.

Estoup, A., and J.-M. Cornuet, 1999 Microsatellite evolution: infer- Petit, R. J., U. M. Csaikl, S. Bordács, K. Burg, E. Coart et al., 2002
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