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	 PHYLOGEOSIM	 (for	 “phylogeographic	 simulator”)	 simulates	 the	 evolution	 of	 DNA	
sequences,	microsatellites	or	SNPs	under	a	model	of	coalescence	on	a	2-dimensional	grid	in	
which	 each	 cell	 is	 treated	 as	 one	 population.	 Going	 backward	 in	 time,	 populations	 can	
exchange	gene	copies	and/or	host	coalescence	events	between	two	or	more	gene	copies,	at	
each	 generation.	 This	 geographic	model	 of	 coalescence	 can	 be	 used	 to	 simulate	 data	 sets	
under	 evolutionary	 scenarios	 taking	both	demographic	 and	geographic	 characteristics	 into	
account	 (e.g.	 isolation	 by	 distance,	 fragmentation,	 expansion,	 secondary	 contact,	 etc).	 In	
addition	 to	generate	data	sets	of	genetic	variation	and	gene	genealogies,	PHYLOGEOSIM	also	
allows,	 in	 the	 case	 of	 DNA	 sequence	 data,	 the	 computation	 of	 several	 summary	 statistics,	
based	 on	 both	 genetic	 and	 geographic	 information.	 Users	 can	 use	 this	 set	 of	 statistics	 to	
compare	 different	 evolutionary	 scenarios	 or	 to	 estimate	 population	 genetic	 parameters.	
PHYLOGEOSIM	is	an	open	source	software	written	in	Java	and	can	thus	be	run	on	any	operating	
system	on	which	a	Java	Virtual	Machine	is	installed	(e.g.,	Windows,	Mac	OS	and	Linux).	
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1. Model implemented in PHYLOGEOSIM 

	 PHYLOGEOSIM	simulates	the	evolution	of	DNA	sequences,	microsatellites	or	SNPs	(“single	
nucleotide	 polymorphisms”)	 under	 a	 demographic	 and	 geographic	model	 of	 coalescence.	 The	
geographic	 structure	 of	 the	 model	 is	 based	 on	 a	 two-dimensional	 grid	 in	 which	 each	 cell	
corresponds	to	one	population.	Users	have	the	opportunity	to	easily	create	a	grid	that	overlays	
their	own	map	(see	example	on	 the	cover	of	 this	manual),	and	to	determine	 the	cells	 that	are	
accessible	 at	 different	 time	 periods	 in	 the	 past.	 Throughout	 this	 manual,	 we	 will	 refer	 to	 a	
sampled	DNA	 sequence,	 a	microsatellite	 or	 a	 chromosome	 fragment	 in	 the	 case	 of	 SNPs,	 as	 a	
“gene	copy”.	

1.1. Description of the algorithm implementing the coalescence simulation 

	 A	 simulation	begins	 at	 t	=	0	 (sampling	 time)	and	 is	 finished	when	all	 gene	 copies	of	a	
given	locus	have	coalesced.	When	more	than	one	locus	are	simulated	in	parallel,	the	coalescence	
process	 for	each	 locus	 is	 completely	 independent	 from	that	of	other	 loci	 (assuming	maximum	
recombination	 among	 loci).	 For	 the	 simulation	of	 SNPs,	 recombination	 events	within	 loci	 (i.e.	
chromosomes	or	fragments	of	chromosome;	see	below)	are	also	considered.	
	
	 Going	backward	in	time,	at	each	generation	g,	a	given	gene	copy	has	the	opportunity:	

	
(1) to	 coalesce	with	another	 gene	 copy	 located	 in	 the	same	population.	The	probability	 of	

coalescence	of	a	given	gene	copy	located	in	the	same	population	j	is	noted	Pc(j,g):	
	

	 	 	 	 (eq.	1)
	

with:	
	 -	Nj(g),	effective	size	of	population	j	(total	number	of	gene	copies)	at	t	=	g.	
	 -	nj(g),	the	number	of	sampled	gene	copies	located	in	population	j	at	t	=	g.	
	

(2) to	 recombine.	At	 this	 stage,	 recombination	 events	are	only	 implemented	 for	 SNP	data.	
The	 probability	 of	 recombination	 is	 defined	 by	 the	 recombination	 rate	 r	 of	 each	 gene	
copy,	 i.e.	 a	 recombination	 rate	 (per	 generation)	 defined	 by	 the	 length	 of	 the	 DNA	
fragment	 carrying	 the	 gene	 copy.	 The	 length	 of	 a	 DNA	 fragment	 is	 measured	 as	 the	
distance	d	between	the	positions	of	the	two	most	distant	SNPs	present	on	this	fragment.	
In	 PHYLOGEOSIM,	 the	 recombination	 rate	 r	 for	 each	 fragment	 is	 inferred	 from	 dmax	
(specified	by	 the	user),	 the	distance	on	a	chromosome	above	which	 the	recombination	
rate	r	is	maximal,	i.e.	r	=	0.5.	If	the	distance	d	between	the	two	most	distant	SNPs	on	the	
DNA	fragment	is	equal	to	or	higher	than	dmax,	 the	recombination	rate	for	that	fragment	
will	be	equal	to	0.5.	On	the	other	hand,	if	d	is	smaller	than	dmax,	this	recombination	rate	
will	 be	 equal	 to	 (d/dmax)*0.5.	 Recombination	 events	 are	 implemented	 during	 the	
coalescence	simulation	using	the	algorithm	of	Hudson	(Hudson,	1991),	but	with	the	two	
modifications	proposed	by	Hein	et	al.	(2005;	p.	143-144).	

	
(3) to	migrate	to	one	of	the	adjacent	populations	on	the	grid.	The	probability	of	a	migration	

event	equals	the	“backward”	migration	rate	(see	below)	from	the	population	of	origin	to	
the	 adjacent	 population.	 The	 probability	 of	 migration	 of	 a	 given	 gene	 copy	 located	 in	
population	j	is	noted	Pm(j,g):	
	

	 	 	 (eq.	2)
		

with:	
	 -	mjj’(g),	the	backward	migration	from	population	j	to	population	j’	at		

Pc j,g( ) =
nj g( )−1
N j g( )

Pm j,g( ) = mjj ' g( )
j '=1

K
∑
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generation	g,	with	mjj’(g)	=	0	if	j	=	j’,	that	can	be	retrieved	from	the	
backward	migration	matrix.	

	 -	K,	the	total	number	of	populations	on	the	grid.	
	

	 When	two	gene	copies	coalesce	in	a	population,	they	merge	into	a	single	ancestral	gene	
copy,	and	when	a	gene	copy	recombines,	it	splits	into	two	ancestral	gene	copies.	The	simulation	
continues	 as	 long	 as	 more	 than	 one	 gene	 copy	 remains.	 Until	 the	 time	 to	 the	 most	 recent	
common	ancestor	(TMRCA),	gene	copies	are	free	to	move	on	the	grid	according	to	the	different	
backward	 migration	 rates	 (see	 below).	 For	 further	 details	 on	 the	 algorithm	 used	 for	 the	
coalescence	 process	 (at	 least	 for	 the	 coalescence	 and	 migration	 events),	 see	 Dellicour	 et	 al.	
(2014).	
	
	 At	 the	 end	 of	 the	 coalescence-migration(-recombination)	 simulation,	 the	 simulator	
builds	a	genealogy	based	on	the	recorded	events	of	coalescence.	In	the	case	of	DNA	sequences,	
mutations	are	stochastically	added	on	this	genealogy	according	to	a	Jukes-Cantor	model	of	DNA	
substitution	(Jukes	&	Cantor,	1969).	For	each	DNA	sequence	locus,	the	user	has	to	specify:	and	
(i)	 the	number	of	mutation	events	OR	a	mutation	rate	(number	of	mutations	per	site	and	per	
generation)	as	well	as	(ii)	the	length	of	the	sequence	(number	of	nucleotides).	
	

In	 the	 case	 of	microsatellite	 loci,	 a	 fictive	 ancestral	 microsatellite	 is	 stochastically	
modified	 through	 the	 genealogy	 following	 a	 TPM	model	 (“two-phase	model”;	 Di	 Rienzo	 et	 al,	
1994).	 In	 this	model,	 given	 that	 a	mutation	 occurs,	 it	 has	 a	 probability	p	 of	 being	 a	 one-step	
mutation	 and	 a	 probability	 (1-p)	 of	 being	 a	 multistep	 mutation.	 In	 the	 one-step	 phase,	 the	
descendent	 allele	 has	 an	 equal	 chance	 of	 being	 one	 repeat	 unit	 larger	 or	 smaller	 than	 its	
ancestor.	 In	 the	multi-step	 phase,	 the	 change	 in	 the	 number	 of	 repeat	 units	 is	 drawn	 from	 a	
specified	 geometric	 distribution	 that	 allows	 for	 large	 changes	 in	 repeat	 number.	 For	 each	
microsatellite	locus,	the	user	has	to	specify	(i)	the	number	of	different	alleles	OR	the	substitution	
rate,	 (ii)	 the	 probability	 p	 of	 the	 TPM	 model	 and	 (iii)	 the	 variance	 of	 the	 TPM	 geometric	
distribution	defining	the	change	in	the	number	of	repeat	units	in	the	multi-step	phase.	

	
For	SNP	data,	two	options	are	available	regarding	mutations:	the	user	can	provide	(1)	a	

uniform	distribution	of	substitution	rates	or	(2)	a	priori	the	proportion	of	SNPs	with	two,	three	
and	four	alleles.	With	the	first	option,	we	assume	that	genotypes	were	generated	via	a	RAD-seq-	
or	GBS-type	approach,	i.e.	that	homologous	DNA	fragments	of	identical	sizes	(usually	±	100	pb),	
from	 different	 parts	 of	 the	 genome,	 were	 compared	 among	 individuals,	 to	 simultaneously	
identify	 and	 type	 polymorphic	 sites.	 The	 number	 of	 substitution	 events	 associated	with	 each	
DNA	fragment	will	then	be	drawn	from	a	Poisson	distribution	of	mean	equal	to	μT	(where	μ	is	a	
substitution	rate	value	drawn	 from	the	uniform	distribution	specified	by	the	user	and	T	 is	 the	
length	of	the	genealogy).	The	program	assumes	an	infinite	substitution	model	and	creates	a	new	
SNP	for	a	given	fragment	(associated	with	a	single	gene	genealogy)	for	each	substitution	event.	
Therefore,	 some	 simulated	 fragments	may	be	 entirely	monomorphic	 (no	 associated	SNP)	 and	
others	may	include	more	than	one	SNP.	It	is	trivial	to	infer	the	proportion	of	monomorphic	DNA	
fragments	 and	 the	 average	 number	 of	 SNP	 per	 fragment	 from	 each	 simulated	 data	 set,	 two	
parameters	 that	 can	 also	 be	 extracted	 from	 the	 observed	 data.	 Comparison	 of	 these	 two	
parameters	between	simulated	and	observed	SNP	data,	can	help	define	a	range	of	substitution	
rates	for	the	simulations	consistent	with	the	observed	data.	Note	that	with	this	option,	it	is	not	
possible	 to	 predict	 the	 exact	 number	 of	 SNP	 loci	 generated	 by	 a	 simulation	 (some	 DNA	
fragments	will	 be	 entirely	monomorphic,	 others	may	 contain	more	 than	one	 SNP	 locus).	With	
the	 second	option,	 each	 simulated	 genealogy	 generates	 a	 single	 SNP,	 and	 the	 exact	 requested	
number	of	SNP	loci	will	be	generated.	Use	of	this	option	should	be	made	with	caution	however:	
it	assumes	 that	 all	 simulated	 genealogies	 are	sufficiently	 long	 that	a	mutation	will	necessarily	
occur	at	the	associated	site,	an	assumption	that	is	unlikely	to	be	realistic.	Indeed,	observed	data	
sets	contain	only	polymorphic	sites	(i.e.	SNPs)	as	a	result	of	an	active	selection	process	that	has	
rejected	 monomorphic	 sites;	 monomorphic	 sites	 are	 on	 average	 associated	 with	 shorter	
genealogies	(lower	probability	of	mutation).	For	the	simulations	to	be	realistic,	it	should	mimic	



	 4	

the	process	of	rejecting	sites	associated	with	too	short	genealogies,	which	is	not	the	case	under	
this	 option	 (no	 filtering	 of	 genealogies).	 In	 addition,	 this	 option	 generates	 a	 single	 SNP	 per	
genealogy,	 and	 therefore	 does	 not	 allow	 generating	 more	 than	 one	 SNP	 per	 DNA	
fragment/genealogy,	as	we	would	expect	under	a	Rad-seq-type	approach.	

	
To	select	the	first	mutation	option,	the	user	specify	the	five	following	parameters:	(i)	the	

total	number	of	SNPs,	(ii)	the	lower	bound	of	the	uniform	distribution	of	substitution	rates,	(iii)	
the	 upper	 bound	 of	 the	 uniform	 distribution	 of	 substitution	 rates,	 (iv)	 the	 number	 of	
chromosomes	and	(v)	the	distance	dmax	([0,1])	expressed	as	a	proportion	of	total	chromosome	
size.	 For	 the	 second	 option,	 an	 alternative	 line	 of	 five	 parameters	 must	 be	 defined:	 (i)	 the	
number	of	SNPs	with	two	alleles,	(ii)	the	number	of	SNPs	with	three	alleles,	(iii)	the	number	of	
SNPs	 with	 four	 alleles,	 (iv)	 the	 number	 of	 chromosomes	 and	 (v)	 the	 distance	 dmax	 (i.e.,	
parameters	4	and	5	are	 identical	in	both	options).	Note	 that	 for	each	simulation,	 the	SNPs	are	
randomly	 distributed	 between	 and	 along	 the	 different	 chromosomes.	 Also,	 after	 having	 been	
randomly	distributed	on	each	chromosome,	groups	of	SNPs	located	on	a	same	chromosome	but	
separated	by	a	distance	higher	than	dmax	 from	other	groups	will	be	treated	as	independent	loci	
from	the	very	beginning	of	the	simulation	process.		

1.2. The need for a preliminary forward simulation to create a backward 
 migration matrix 

	 Coalescence	simulations	implemented	in	PHYLOGEOSIM	use	backward	migration	rates.	
In	some	cases,	forward	and	backward	evolution	migration	rates	are	not	identical.	For	example,	
in	 the	 case	 of	 a	 geographic	 expansion,	 the	 probability	 that	 gene	 copies	 from	 a	 previously	
occupied	cell	A	migrate	in	one	generation	to	a	newly	colonized	cell	B	on	the	grid	could	be	set	to	
0.001,	 defining	 the	 forward	 evolution	migration	 rate	 from	A	 to	B.	However,	 to	 implement	 the	
coalescence	 simulation	 going	 backward	 in	 time,	 we	 need	 to	 know	 the	 backward	 evolution	
migration	rate,	i.e.,	the	probability	that	gene	copies	are	transferred	from	B	to	A,	going	backward	
in	time.	Because	gene	copies	in	B	at	the	first	generation	of	the	geographic	expansion	(forward	
evolution)	are	all	migrants	from	A,	the	backward	migration	rate	from	B	to	A	is	equal	to	1.0.	This	
backward	 migration	 rate	 will	 then	 decrease	 at	 each	 generation	 of	 forward	 evolution,	 as	 the	
population	 effective	 size	 of	 cell	 B	 increases	 (following	 reproduction	 and	 migration)	 until	 it	
reaches	the	maximum	size	set	by	the	user.	Because	it	would	be	extremely	laborious	to	manually	
generate	all	necessary	backward	migration	matrices	for	the	coalescence	simulation,	and	because	
there	is	a	certain	level	of	stochasticity	associated	with	this	process,	PHYLOGEOSIM	will	generate	
these	matrices	automatically	by	performing	a	forward	simulation.		
	
	 The	 program	 will	 thus	 perform	 a	 preliminary	 forward	 simulation	 to	 estimate	 the	
different	backward	migration	rates	and	effective	population	sizes	occurring	at	each	generation.	
For	this	purpose,	PHYLOGEOSIM	requires	that	users	specify	an	initial	matrix	of	ancestral	effective	
population	sizes,	one	or	more	matrices	of	maximal	effective	population	sizes	(and	generations	at	
which	they	change),	a	rate	of	reproduction,	two	short-distance	and	one	long-distance	forward	
migration	rates.	The	two	short-distance	forward	migration	rates	fm1	and	fm2	correspond	to	two	
different	 short-distance	 migration	 levels,	 i.e.	 between	 adjacent	 populations	 and	 between	
populations	separated	by	two	cells	on	the	grid:	

	

-	fm1	(e.g.	0.001):	first	level	of	short-distance	migration,	
migration	between	cell	0	(origin)	and	cells	1	(destinations).	

-	fm2	(e.g.	0.0001):	second	level	of	short-distance	migration,	
migration	between	cell	0	(origin)	and	cells	2	(destinations).	

Figure	1:	illustration	of	the	two	scales	
of	migration	on	the	grid.	
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	 In	 addition	 to	 the	 two	 levels	 of	 short-distance	migration,	PHYLOGEOSIM	also	 allows	 the	
possibility	 of	 long-distance	 migration	 events.	 Such	 events	 are	 specified	 with	 the	 following	
parameters:	(i)	a	LDD	(long-distance	dispersion)	rate	fmLDD,	(ii)	an	upper	distance	limit	LDDmax	
expressed	as	an	Euclidian	distance	in	number	of	cells,	(iii)	the	name	of	the	statistical	distribution	
of	 the	LDD	distances	 (“uniform”	or	 “lognormal)	 and,	 in	 the	 case	of	a	 “lognormal”	distribution,	
(iv)	the	value	of	the	“scale”	parameter	of	this	lognormal	distribution	(the	“location”	parameter	of	
this	 distribution	 being	 automatically	 set	 to	 zero).	 Note	 that	 the	 lognormal	 distribution	 is	
truncated	 based	 on	 the	 maximal	 LDD	 distance	 LDDmax	 also	 used	 to	 define	 the	 limit	 of	 the	
“uniform”	distribution	([0,	LDDmax]).	
	
	 The	 model	 therefore	 assumes	 that	 the	 dispersal	 ability	 and	 reproduction	 rate	 of	 the	
studied	 organism	 is	 constant	 across	 the	 entire	 grid.	 Only	 the	 carrying	 capacity	 of	 each	
population	is	allowed	to	change	by	defining	the	maximum	effective	size	of	each	cell	separately.	
Note	 that	 the	 presence	 of	 a	 barrier	 to	 migration	 (e.g.	 a	 mountain	 range	 or	 a	 river)	 can	 be	
modelled	by	assigning	a	small	(or	null)	maximal	effective	size	to	one	or	more	squares,	thereby	
reducing	 the	 probability	 of	 migration	 through	 them.	 The	 preliminary	 forward	 simulation	 is	
performed	as	followed:	starting	with	the	most	ancestral	matrix	of	effective	size,	at	a	time	defined	
by	 the	 user,	 the	 simulation	 proceeds	 forward	 one	 generation	 at	 a	 time,	 until	 t	 =	 0.	 At	 each	
generation:	

	
(1) all	the	effective	population	sizes	are	recorded.	
(2) migration	 events	 among	 populations	 are	 simulated,	 using	 the	 two	 pre-defined	

forward	 migration	 rates	 and	 the	 effective	 population	 sizes	 of	 the	 preceding	
generation.	These	migration	events	are	recorded	and	used	to	estimate	the	backward	
migration	rates	at	this	generation.	

(3) the	 effective	 size	 of	 each	 population	 increases	 as	 individuals	 reproduce	 and	 new	
migrants	are	brought	in.	

(4) if	 effective	 population	 sizes	 have	 exceeded	 their	 maximal	 value,	 these	 sizes	 are	
reduced	to	these	maximal	values.	

	 	
When	 two	 populations	 have	 reached	 their	 maximal	 effective	 size,	 instead	 of	 being	

estimated	by	simulating	an	exchange	of	migrants,	the	two	backward	migration	rates	connecting	
them	are	directly	estimated	according	to	the	following	deterministic	formula:		

	

	

with:	

-	mjj’(g),	the	backward	migration	rate	from	population	j	to	population	j’	at		
	 	 generation	g.	
-	Nj(g),	the	effective	size	(haploid	case)	of	population	j	at	generation	g.	
-	Mjj’,	the	forward	migration	rate	from	population	j	to	population	j’.	If	j	=	j’:		

	 	 	 	 	 	

-	P,	the	total	number	of	populations	(cells)	on	the	grid.	
	
When	all	the	effective	sizes	have	reached	their	maximum,	the	forward	simulation	stops	

until	 the	 next	 change	 of	 maximal	 effective	 sizes	 matrix	 or	 until	 the	 end	 of	 the	 forward	
simulation.	Until	this	point,	all	the	backward	migration	rates	are	fixed	values	estimated	with	this	
1th	deterministic	 formula.	The	use	of	a	deterministic	 formula	to	estimate	backward	migration	
rates	when	effective	population	sizes	are	constant	allows	a	significant	 increase	of	 the	 forward	
simulation	speed.		

	

mjj ' g( ) =
N j ' g−1( ) ⋅M j ' j

Np g−1( ) ⋅Mpj( )p=1

P
∑

M jj ' =1− M jp
p≠ j
∑

1th deterministic formula (eq. 3) 



	 6	

	 At	 each	generation,	 estimated	 effective	population	 sizes	and	backward	migration	 rates	
are	 recorded	 and	will	 be	 used	 for	 the	 backward	 simulations.	 Since	 this	 preliminary	 forward	
simulation	is	stochastic	(migration	events	occur	according	to	probabilities	defined	by	forward	
migration	rates),	the	program	can	renew	the	forward	simulation	every	X	backward	simulations	
to	account	for	this	stochasticity	(X	being	defined	by	the	user).	
	
	 Note	that	the	preliminary	forward	simulation	does	not	necessarily	cover	the	entire	range	
of	 generations	 that	 will	 be	 spanned	 during	 the	main	 backward	 simulation.	 Indeed,	 when	 the	
backward	 simulation	 reaches	 the	 most	 ancestral	 generation	 of	 the	 forward	 simulation,	 the	
program	simply	uses	the	most	ancestral	effective	population	sizes	and	backward	migration	rates	
are	estimated	according	to	the	following	deterministic	formula:	

	 	 	
with:	

-	ma,jj’,	the	backward	migration	rate	from	population	j	to	population	j’	estimated	
	 	 during	the	most	ancestral	generation	of	the	forward	simulation.	

-	Na,j,	the	effective	size	of	population	j		(haploid	case)	estimated	during	the	most	
	 	 ancestral	generation	of	the	forward	simulation.	

	  

ma, jj ' =
Na, j ' ⋅M j ' j

Na,p ⋅Mpj( )p=1

P
∑

2th deterministic formula (eq. 4) 
 

Figure	 2:	 schematic	 program	 flow	 with	 the	 “input.txt”	 example	 file.	 (*)	 During	 the	 forward	
simulation,	when	two	populations	have	reached	their	maximal	effective	size,	the	two	backward	
migration	 rates	 connecting	 them	 are	 directly	 estimated	 using	 the	 1th	 deterministic	 formula,	
instead	of	being	estimated	by	simulating	an	exchange	of	migrants.	
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1.3. Simulation parameters 

	 Below,	the	list	of	parameters	that	needs	to	be	specified	by	the	user:	
	

• Number	of	populations	(or	number	of	cells	on	the	grid).	
• Number	of	independent	backward	simulations	to	perform.	
• Rate	at	which	the	software	will	renew	the	forward	simulation.	The	software	thus	uses	

backward	migration	rates	and	effective	population	sizes	recorded	on	only	one	forward	
simulation	but	renew	this	simulation	every	X	backward	simulations	(X	being	defined	by	
the	user).	

• Reproduction	rate	tR.	
• Two	short-distance	forward	migration	rates	fm1	and	fm2,	respectively	between	adjacent	

populations	and	populations	separated	by	one	grid	cell.	
• Number	of	user-defined	groups.	These	groups	of	populations	are	specified	in	an	

additional	input	file	(“groups.txt”,	cfr.	3.	Input	files)	and	are	used	as	a	basis	for	the	
computation	of	several	summary	statistics	(cfr.	2.	Computed	summary	statistics	for	DNA	
sequences).		

• Long-distance	forward	migration	rate	fmLDD,		along	with	the	name	of	the	statistical	
distribution	of	the	LDD	distances	(“uniform”	or	“lognormal”),	the	upper	distance	limit	
LDDmax	(expressed	as	an	Euclidian	distance	in	number	of	cells),	and,	in	the	case	of	a	
“lognormal”	distribution,	the	value	of	the	“scale”	parameter	of	this	lognormal	
distribution.	

• In	the	case	of	DNA	sequences,	for	each	locus:	number	of	mutations	that	will	occur	on	the	
final	genealogy	or	the	mutation	rate	(number	of	mutations	per	site	and	per	generation),	
and	the	length	the	DNA	sequence	(i.e.	number	of	nucleotides).	

• In	the	case	of	microsatellites,	for	each	locus:	number	of	different	alleles	or	the	mutation	
rate,	probability	p	of	the	TPM	model	and	variance	of	the	TPM	geometric	distribution	
defining	the	change	in	the	number	of	repeat	units	in	the	multi-step	phase.	

• In	the	case	of	SNPs,	there	are	two	options:	(1)	total	number	of	SNPs,	lower	and	upper	
bounds	of	the	uniform	distribution	of	substitution	rates,	number	of	chromosomes	and	
distance	dmax	expressed	as	a	proportion	of	total	chromosome	size;	(2)	number	of	SNPs	
with	two,	three	and	four	alleles,	number	of	chromosomes	and	distance	dmax	expressed	as	
a	proportion	of	total	chromosome	size.	

• A	list	of	the	different	summary	statistics	to	compute	after	each	simulation	(case	of	DNA	
sequences).	

• A	matrix	with	all	population	ID’s,	determining	the	position	of	each	population	on	the	grid	
and	the	dimensions	of	this	grid.	

• A	matrix	with	the	number	of	sampled	individuals	in	each	cell	(population)	of	the	grid.	
This	matrix	has	to	correspond	to	the	matrix	of	population	ID’s.	

• The	maximal	effective	population	sizes	matrices	and	the	generation	at	which	they	occur.	
• The	ancestral	effective	population	sizes	matrix.	
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2. Computed summary statistics for DNA sequences 

	 In	the	case	of	DNA	sequences	simulation,	PHYLOGEOSIM	proposes	the	computation	of	the	
following	summary	statistics	after	each	simulation	(this	list	is	likely	to	be	expanded	as	needed,	
suggestions	are	welcome)1:		

	
• NHtot,	the	total	number	of	allelic	types	for	the	considered	locus.	
• global	GST	estimator	(Pons	&	Petit,	1995)	on	sampled	populations	(sampled	cells).	
• global	NST	estimator	(Pons	&	Petit,	1996)	on	sampled	populations	(sampled	cells).	
• AMOVA	global	ΦST	estimator	for	K=1	(Excoffier	et	al,	1992)	on	sampled	populations	

(sampled	cells).	
• IBDSC:	isolation	by	distance	slope	coefficient.	This	is	the	slope	coefficient	of	the	linear	

regression	estimated	from	y	=	f(ln(x))	with	y	=	(ΦST/(1-ΦST))	(Rousset,	1997).	
• XH:	ratio	between	the	number	of	haplotypes	in	a	user-defined	group	of	populations	

and	the	total	number	of	haplotypes.	
• π:	nucleotidic	diversity	(Nei	&	Li,	1979)	within	each	user-defined	group	of	

populations.	

								𝜋 = 	
2! (𝑛 − 2)!

𝑛!
* * 𝑘,,-

.

,-/,01

.21

,/1
	

	 with:	
	 -	kii’,	number	of	differences	between	sequence	i	and	sequence	i’.	
	 -	n,	number	of	sequences	in	the	considered	user-defined	group.	

• πR:	computed	for	each	user-defined	group	of	population,	this	is	the	ratio	between	the	
nucleotidic	diversity	within	a	considered	user-defined	group	of	populations	and	the	
nucleotidic	 diversity	 within	 the	 virtual	 group	 formed	 by	 all	 the	 other	 populations	
which	are	not	in	this	group	(Mardulyn	et	al,	2009).	

• AR:	 estimator	 of	 allelic	 richness	within	 each	 user-defined	 group	 of	 populations	 (El	
Mousadik	&	Petit,	1996).		

• XHS,	 πS,	 πRS	 and	 ARS:	 ratios	 between	 each	 XH,	 π,	 πR	 or	 AR	 and	 the	 surface	 of	 the	
corresponding	user-defined	group.	This	surface	is	the	number	of	cells	or	the	number	
of	populations	present	in	the	group.	

• ΦSC,	ΦST,	ΦCT:	AMOVA	Φ-statistics	(Excoffier	et	al,	1992)	computed	for	the	population	
structure	linked	to	the	user-defined	groups.	

• pairwise	ΦST	(Excoffier	et	al,	1992)	between	user-defined	groups	of	populations.	

• mΦSTdgeo:	the	average	of	ratios	between	ΦST	estimators	and	geographical	distances	
between	all	pairwise	populations.	

																			𝑚𝛷56𝑑𝑔𝑒𝑜 =
2! (𝑝 − 2)!

𝑝!
* <

𝛷56=>=?
𝑑=>=?

@
=>A=?

	

	 	 with:	
	 	 -	p,	the	number	of	populations.	
	 	 -	ΦSTj1j2,	ΦST	between	populations	j1	and	j2.	
	 	 -	dj1j2,	geographical	distance	between	populations	j1	and	j2.	

																																																								
1	These	same	summary	statistics	can	be	computed	on	real	data	sets	using	the	software	SPADS	(as	
described	at	the	end	of	this	manual).	
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3. Input files 

	 PHYLOGEOSIM	requires	two	different	input	files:	
	

(1) the	“input.txt”	file	is	the	main	input	file	containing	all	the	simulation	parameters.	Here	
is	an	example	of	this	file,	designed	for	an	expansion	scenario	on	a	10x10	grid:	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
				
	

	

Input	file	for	PhyloGeoSim	2.0															
															
1	---------------------------															
100	1000	0.01	1.5	0.001	0.0001	4	0.00001	lognormal	8	2							
															
2	---------------------------															
DNA	15	800	11	600	5	330													
															
3	---------------------------															
Nhtot	Gst	Nst	Fst	mFstdgeo	IBDSC	Xh	Pi	Pir	Ar	AMOVA	groupsFst	
															
4	---------------------------															
1	2	3	4	5	6	7	8	9	10						
11	12	13	14	15	16	17	18	19	20						
21	22	23	24	25	26	27	28	29	30						
31	32	33	34	35	36	37	38	39	40						
41	42	43	44	45	46	47	48	49	50						
51	52	53	54	55	56	57	58	59	60						
61	62	63	64	65	66	67	68	69	70						
71	72	73	74	75	76	77	78	79	80						
81	82	83	84	85	86	87	88	89	90						
91	92	93	94	95	96	97	98	99	100						
															
5	---------------------------															
0	10	0	0	0	0	0	0	0	10						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	10	0	0	0						
0	0	0	10	0	0	0	0	0	0						
0	0	0	0	0	10	0	0	0	0						
0	0	0	10	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
10	0	0	0	0	0	0	0	10	0						
0	0	0	0	0	0	0	0	0	0						
															
6	---------------------------															
1000														
															
7	---------------------------															
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
5000	5000	5000	5000	5000	5000	5000	5000	5000	5000						
															
5000	5000	5000	5000	0	0	0	0	0	0						
5000	5000	5000	5000	0	0	0	0	0	0						
5000	5000	5000	5000	0	0	0	0	0	0						
5000	5000	5000	5000	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						

Matrix of 
population ID’s 

Number of sampled 
gene copies per 
population 
	

Matrix of maximal 
effective population 
sizes 
	

Matrix of ancestral 
population sizes 
	

Times at which the maximal effective population sizes matrices 
occur. Here: only one matrix, between t=1000 (t1) and t=0. 
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Description	of	each	line	in	the	input	file:	
	
• 1.	(4th	line)	A	list	of	parameters:	

(a) the	number	of	populations	(number	of	cells	on	the	grid).	
(b) the	number	of	independent	backward	simulations	to	perform.	
(c) the	number	of	preliminary	forward	simulations	to	perform.	This	number	has	to	

be	smaller	than	one	and	will	be	used	as	a	rate	at	which	the	software	performs	a	
new	forward	simulation.	In	this	example,	there	will	be	a	new	forward	simulation	
every	10	backward	simulations	(1000*0.01	=	10).	

(d) the	reproduction	rate	tR	(only	used	in	the	preliminary	forward	simulation).	
(e) the	first	level	short-distance	forward	migration	rate	fm1	(between	adjacent	cells;	

only	used	in	the	forward	simulation).	
(f) the	second	level	short-distance	forward	migration	rate	fm2	(between	adjacent	

cells;	only	used	in	the	forward	simulation).	
(g) the	number	of	user-defined	groups	(only	used	for	DNA	sequence	summary	

statistics	estimation).	
(h) the	long-distance	forward	migration	rate	fmLDD	(optional;	only	used	in	the	

forward	simulation).	
(i) the	name	of	the	statistical	distribution	of	the	LDD	distances	(“uniform”	or	

“lognormal”)	for	the	long-distance	forward	migration	rate	(optional).	
(j) the	upper	distance	limit	LDDmax	(expressed	as	Euclidian	distance	in	number	of	

cells)	for	the	long-distance	forward	migration	rate	(optional).	
(k) in	the	case	of	the	LDD	“lognormal”	distribution,	the	value	of	the	“scale”	parameter	

of	this	lognormal	distribution	(optional).	
• 2.	(7th	line)	For	each	locus:		the	first	element/keyword	specifies	the	type	of	marker:	

“DNA”,	“mSAT”	(or	“STR”),	or	“SNP”	(not	case	sensitive).	
If	the	type	of	marker	is	set	to	“DNA”:	
(a) the	number	of	mutations	that	will	occur	on	the	final	genealogy	of	each	locus	OR	

the	mutation	rate	of	each	locus	(number	of	mutations/locus/generation).	
(b) the	length	(number	of	nucleotides)	of	each	locus.	
If	the	type	of	marker	is	set	to	“mSAT”	or	“STR”:	
(a) the	number	of	different	alleles	OR	the	substitution	rate.	
(b) the	probability	p	of	the	TPM	model.	
(c) the	variance	of	the	TPM	geometric	distribution	defining	the	change	in	the	

number	of	repeat	units	in	the	multi-step	phase.	
If	the	type	of	marker	is	set	to	“SNP”:	
(a) the	number	of	SNPs	with	two	alleles	OR	the	total	number	of	SNPs	(if	a	uniform	

distribution	of	substitution	rates	is	defined).	
(b) the	number	of	SNPs	with	three	alleles	OR	the	lower	bound	of	the	uniform	

distribution	of	substitution	rates.	
(c) the	number	of	SNPs	with	four	alleles	OR	the	upper	bound	of	the	uniform	

distribution	of	substitution	rates.	
(d) the	number	of	chromosomes.	
(e) the	distance	dmax	([0,1])	expressed	as	a	proportion	of	total	chromosome	size.	
In	this	input	file	example,	there	are	3	DNA	sequence	loci:	the	first	is	800	bp	long	and	
is	associated	to	15	substitutions,	the	second	is	600	bp	long	with	11	substitutions	and	
the	third	is	330	bp	long	with	5	substitutions.	

• 3.	(10th	line)	The	list	of	the	different	summary	statistics	to	compute	after	each	
simulation.	The	following	keywords	must	be	used	to	invoke	them:	“Nhtot”,	“Gst”,	
“Nst”,	“Fst”	(for	ΦST),	“mFstdgeo”	(for	mΦSTdgeo),	“S”,	“IBDSC”,	“Xh”,	“Pi”	(for	π),	“Pir”	
(for	πR),	“Ar”,	“AMOVA”,	“groupsFst”	(for	pairwise	ΦST).	

• 4.	The	matrix	with	all	the	populations	ID’s	(numbers,	from	1	to	the	total	number	of	
cells	on	the	grid),	determining	the	position	of	each	population	on	the	grid	and	the	
dimensions	of	this	grid.	The	grid	and	this	corresponding	matrix	do	not	have	to	be	
square-like,	e.g.	a	grid	with	dimensions	20x30	can	be	created.	
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• 5.	The	matrix	with	the	number	of	sampled	individuals	in	each	cell	(population)	of	the	
grid.	This	matrix	must	correspond	to	the	matrix	of	population	ID’s.		

• 6.	Times	(in	generations)	until	which	the	different	maximal	effective	population	sizes	
matrix	occur.	The	last	time	will	also	correspond	to	the	most	ancestral	effective	
population	sizes	matrix,	and	thus	to	the	beginning	of	the	preliminary	forward	
simulations.	

• 7.	The	different	maximal	effective	population	sizes	matrices.	These	matrices	
correspond	to	the	population	ID’s	matrix.	In	this	input	file	example,	there	will	be	only	
one	population	sizes	change,	occurring	t	=	1000	generations	ago	(corresponding	to	
t1	in	figure	2).	The	last	matrix	must	be	the	ancestral	population	sizes	matrix.	

	
(2) the	“groups.txt”	file:	this	text	file	contains	the	different	groups	ID’s	followed	by	the	ID’s	

of	populations	that	are	 in	 the	group.	These	groups	are	 thus	user-defined	and	used	 for	
the	computation	of	some	summary	statistics	(XH,	π,	πR,	and	AR).	Here	is	an	example:	
	

	
	
	
	
	

	
Each	 line	must	 correspond	 to	 a	 group	 and	 begin	with	 the	 group	 ID	 followed	 by	 some	
populations	ID’s	separated	by	single	spaces.	In	this	example,	the	second	line	refers	to	the	
group	B	which	contains	populations	n°6,	7,	8,	9,	10,	16,	17,	etc.	

	
WARNING:		

-	 these	 two	 input	 files	 need	 to	 be	 formatted	 as	 text	 files	with	 elements	 separated	 by	
single	spaces	or	tabulations.	One	easy	way	to	construct	the	“input.txt”	file	is	to	write	it	in	
Excel,	and	to	save	it	into	a	“tab-delimited	text	file”.	
-	the	precise	location	of	each	line	in	the	“input.txt”	file	is	very	important.	 

	  

groupA	1	2	3	4	5	11	12	13	14	15	21	22	23	24	25	31	32	33	34	35	41	42	43	44	45																										
groupB	6	7	8	9	10	16	17	18	19	20	26	27	28	29	30	36	37	38	39	40	46	47	48	49	50																										
groupC	51	52	53	54	55	61	62	63	64	65	71	72	73	74	75	81	82	83	84	85	91	92	93	94	95																										
groupD	56	57	58	59	60	66	67	68	69	70	76	77	78	79	80	86	87	88	89	90	96	97	98	99	100									
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4. How to run the program 

	 Input	 files	 (“input.txt”	and	“groups.txt”	 files)	must	be	 located	 in	 the	same	 folder	as	 the	
“PhyloGeoSim_2.0.jar”	 executable	 file.	 If	 the	 user	 wants	 to	 generate	 and	 saves	 the	 simulated	
genealogies	and	DNA	sequence	matrices,	a	folder	precisely	named	“simulations_outputs”	has	to	
be	created	in	the	same	folder	as	the	executable	file.	A	double	click	on	the	executable	file	will	start	
the	program.	PHYLOGEOSIM	was	created	as	a	command-line	program,	to	facilitate	its	interaction	
with	other	programs.	Here	is	the	command	to	launch	PHYLOGEOSIM	from	a	terminal	window:	

java		-jar		PhyloGeoSim_2.0.jar	
	

	 Note	 that	 if	 the	user	wants	 to	 specify	 a	 specific	 input	 file	name	and	output	prefix,	 the	
following	command	can	be	used	to	launch	PHYLOGEOSIM	from	a	terminal	window:		

java		-jar		PhyloGeoSim_2.0.jar		input_file_name.txt		output_file_prefix	

5. Output files 

	 PHYLOGEOSIM	returns	several	output	files:	
	
(1) simulated	genealogies	(Newick	format,	“.tre”	extension	file)	and	simulated	molecular	

variation	data	(DNA	sequences,	 SNPs	or	microsatellite	genotypes).	These	 files	will	
be	 generated	 only	 if	 a	 folder	 precisely	 named	 “simulations_outputs”	 is	 created	 in	 the	
same	folder	as	the	“PhyloGeoSim	2.0.jar”	executable	file.	By	not	creating	this	folder,	users	
can	 decide	 to	 avoid	 generating	 these	 files,	 e.g.,	 in	 cases	 in	 which	 a	 high	 number	 of	
simulations	are	performed.	If	DNA	sequences	are	simulated,	the	output	file	is	generated	
in	the	Phylip	format	(Felsenstein,	2004)	and	has	the	“.phy”	extension.	When	Newick	and	
Phylip	files	are	generated,	they	are	labelled	with	the	corresponding	simulation	number.	If	
SNP	data	are	simulated,	a	text	file	provides	on	each	line	the	allele	frequencies	for	a	given	
SNP	at	all	populations.	 	The	 first	 text	string	 in	such	a	 line	 identifies	 the	SNP,	 locus	and	
chromosome,	then	the	number	of	each	of	the	4	possible	alleles	are	given	separately	for	
each	 sampled	 population.	 Note	 that	 only	 polymorphic	 loci	 are	 included;	 since	 all	
simulated	loci	are	serially	numbered,	it	is	easy	to	identify	missing	loci,	i.e.,	monomorphic	
loci	that	were	excluded	from	the	output	file,	and	thus	to	calculate	the	overall	proportion	
of	 simulated	monomorphic	 loci.	 Finally,	 if	microsatellite	data	 are	simulated,	 the	output	
file	 is	 generated	 in	 the	 SPAGeDi	 format	 (Hardy	&	 Vekemans,	 2002).	 This	 program	 can	
then	be	used	to	export	the	data	file	in	other	known	formats,	such	as	the	GenePop	format	
(Rousset,	2008).	

	
(2) A	tab-delimited	text	file	containing	all	the	computed	values	of	the	chosen	summary	

statistics	 (only	 if	 simulating	 DNA	 sequences).	 The	 name	 of	 this	 file	 is	 always	
“summary_stats_temp.txt”.	The	name	and	the	structure	of	this	text	file	have	been	chosen	
in	order	to	make	it	compatible	with	the	package	ABCtoolbox	(Wegmann	et	al,	2010)	(cfr.	
6.	ABCtoolbox	compatibility).	The	 first	line	contains	 the	name	of	the	different	summary	
statistics	chosen	by	 the	user.	Below,	each	 line	corresponds	to	a	distinct	simulation	and	
contains	summary	statistics	values	computed	on	the	corresponding	simulated	data	set.	A	
“messages_file.txt”	containing	several	additional	data:	the	parameters	values	defined	
by	the	user	and	potential	error	messages.	

6. ABCtoolbox compatibility 

	 PHYLOGEOSIM	 2.0	 is	 compatible	 with	 the	 Approximate	 Bayesian	 Computation	 (ABC)	
package	 ABCtoolbox	 (Wegmann	 et	 al,	 2010).	 This	 should	 make	 it	 possible	 to	 integrate	 this	
simulator	 in	 an	 ABC	 analysis.	 Note	 however	 that	 the	 amount	 of	 time	 needed	 to	 achieve	 one	
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simulation	with	PHYLOGEOSIM	can	be	large.	Since	ABC	analyses	(even	if	coupled	with	an	MCMC	
algorithm)	often	 require	more	 than	100,000	 simulations,	 an	ABC	analysis	may	 turn	out	 to	be	
unreasonably	long.	We	thus	advise	users	who	want	to	use	PHYLOGEOSIM	in	an	ABC	framework	to	
perform	 exploratory	 analyses	 to	 check	 the	 speed	 of	 performing	 simulations	 and	 to	 identify	
useful	summary	statistics	to	compute.	

7. Software limitation 

	 In	our	view,	PHYLOGEOSIM	has	one	main	practical	 limitation:	a	RAM	memory	 limitation	
(or	“Java	heap	space”)	can	be	reached	during	the	forward	simulations	process	because	a	lot	of	
information	has	to	be	stored	(migration	events	and	population	effective	sizes).		
	

	 This	can	be	the	case	when:	

- effective	population	sizes	take	time	to	reach	their	maximal	sizes.	Until	this	point,	
the	forward	simulation	works	generation	by	generation	and	thus	saves	one	set	of	
backward	 migration	 rates	 and	 effective	 sizes	 per	 generation.	 But	 when	 all	
effective	 population	 sizes	 reach	 their	 maximal	 value,	 the	 program	 uses	 a	
deterministic	formula	(1th	deterministic	formula)	to	estimate	the	only	one	set	of	
backward	migrations	rates	occurring	until	the	next	change	of	maximal	effective	
population	sizes	matrix.	

- user	 asks	 for	 a	 given	 number	 of	 preliminary	 forward	 simulations	 to	 perform	
before	all	the	backward	simulations.	In	this	case,	the	software	computes	average	
backward	migration	rates	and	effective	population	sizes	over	all	these	recorded	
preliminary	forward	simulations.	Since	the	program	computes	average	backward	
migration	 rates	 and	 effective	 sizes	 based	 on	 all	 these	 preliminary	 forward	
simulations,	it	has	to	store	a	lot	of	information	before	computing	average	values.	

These	large	amounts	of	information	to	save	can	cause	the	RAM	memory	limit	of	the	Java	
virtual	machine	(JVM)	to	be	reached.	In	this	case,	a	solution	to	try	again	on	the	same	computer	is	
to	increase	the	RAM	memory	allowed	to	the	JVM	by	the	operating	system.	

8. PGSVIEWER 2.0 

	 PGSVIEWER	 2.0	 allows	 to	 visualise	 the	 evolution	 of	 effective	 population	 size	 matrices	
during	 forward	 simulations	performed	 in	 the	 same	way	 as	 PHYLOGEOSIM.	 PGSVIEWER	 uses	 the	
same	 input	 files	 and	 stops	 at	 the	 end	 of	 the	 forward	 simulation.	 This	 can	 be	 useful	 before	
launching	a	big	set	of	simulations	with	PHYLOGEOSIM	in	order	to	check	if	the	forward	simulation	
corresponds	to	the	evolutionary	scenario	implemented	by	the	user.	PGSVIEWER	2.0	is	a	JavaScript	
application	 compiled	 from	 a	 R	 script	 with	 the	 “shiny”	 package.	 To	 use	 PGSVIEWER	 2.0	 and	
generate	an	animated	GIF	display	the	forward	simulation,	follow	these	steps:	
	
	 (1)	install	ImageMagik®	(it	can	be	found	on	www.imagemagik.org)	
	 (2)	in	R:	
	 	 >	install.packages(“shiny”)	
	 	 >	library(shiny)	
	 	 >	runGist("eded0ace2f52a1840451f9b91878d35c")			

9. SPADS 1.0 

	 SPADS	 1.0	 (for	 “Spatial	 and	 Population	 Analysis	 of	 DNA	 Sequences”)	 is	 a	 population	
genetics	software	computing	the	same	summary	statistics	as	PHYLOGEOSIM	but	on	real	data	sets.	
SPADS	also	implements	two	clustering	algorithms	(the	SAMOVA	and	Monmonier	algorithm)	and	
several	input	file	conversion.	See	SPADS	manual	for	further	details	about	this	toolbox.	
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10. Software availability 

	 PHYLOGEOSIM	 2.0	 is	 available	 free	 of	 charge	 at	 ebe.ulb.ac.be/ebe/Software.html.	 Java	
source	 code,	 example	 files	 and	 the	 software	manuals	 can	 all	 be	 downloaded	 at	 this	 address.	
Questions	and	bug	reports	should	be	directed	to	simon.dellicour[at]ulb.ac.be. 
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